Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 15901, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354160

RESUMO

Climate-smart agriculture (CSA)-based management practices are getting popular across South-Asia as an alternative to the conventional system for particular weed suppression, resources conservation and environmental quality. An 8-year study (2012-2013 to 2019-2020) was conducted to understand the shift in weed density and diversity under different CSA-based management practices called scenarios (Sc). These Sc involved: Sc1, conventional tillage (CT)-based rice-wheat system with flood irrigation (farmers' practice); Sc2, CT-rice, zero tillage (ZT)-wheat-mungbean with flood irrigation (partial CA-based); Sc3, ZT rice-wheat-mungbean with flood irrigation (partial CSA-based rice); Sc4, ZT maize-wheat-mungbean with flood irrigation (partial CSA-based maize); Sc5, ZT rice-wheat-mungbean with subsurface drip irrigation (full CSA-based rice); and Sc6, ZT maize-wheat-mungbean with subsurface drip irrigation (full CSA-based maize). The most abundant weed species were P. minor > A. arvensis > M. indicus > C. album and were favored by farmers' practice. However, CSA-based management practices suppressed these species and favored S. nigrum and R. dentatus and the effect of CSAPs was more evident in the long-term. Maximum total weed density was observed for Sc1, while minimum value was recorded under full CSA-based maize systems, where seven weed-species vanished, and P. minor density declined to 0.33 instead of 25.93 plant m-2 after 8-years of continuous cultivation. Full CSA-based maize-wheat system could be a promising alternative for the conveniently managed rice-wheat system in weed suppression in north-west India.

2.
Sci Rep ; 10(1): 19267, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159103

RESUMO

In the western Indo-Gangetic plains, issues of deterioration in soil, water, and environment quality coupled with low profitability jeopardize the sustainability of the dominant rice-wheat (RW) system. To address these issues, crop diversification and conservation agriculture (CA)-based management hold considerable promise but the adoption of both approaches has been low, and additional evidence generation from a multi-criteria productivity and sustainability perspective is likely required to help drive the change. Compared to prevailing farmers' practice (FP), results suggest that CA-based rice management increased profitability by 13% and energy use efficiency (EUE) by 21% while reducing irrigation by 19% and global warming potential (GWP) by 28%. By substituting CA-based maize for rice, similar mean profitability gains were realized (16%) but transformative improvements in irrigation (- 84%), EUE (+ 231%), and GWP (- 95%) were observed compared to FP. Inclusion of mungbean in the rotation (i.e. maize-wheat-mungbean) with CA-based management increased the system productivity, profitability, and EUE by 11, 25 and 103%, respectively while decreasing irrigation water use by 64% and GWP by 106% compared to FP. Despite considerable benefits from the CA-based maize-wheat system, adoption of maize is not widespread due to uneven market demand and assured price guarantees for rice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...