Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 127: 414-424, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29680705

RESUMO

Natural rubber (cis-1, 4-polyisoprene) is being produced from bark laticifer cells of Hevea brasiliensis and the popular high latex yielding Indian rubber clones are easily prone to onset of tapping panel dryness syndrome (TPD) which is considered as a physiological syndrome affecting latex production either partially or completely. This report describes an efficient protocol for development of transgenic rubber plants by over-expression of 3-hydroxy 3-methylglutaryl Co-enzyme A reductase 1 (hmgr1) gene which is considered as rate limiting factor for latex biosynthesis via Agrobacterium-mediated transformation. The pBIB plasmid vector containing hmgr1 gene cloned under the control of a super-promoter was used for genetic transformation using embryogenic callus. Putatively transgenic cell lines were obtained on selection medium and produced plantlets with 44% regeneration efficiency. Transgene integration was confirmed by PCR amplification of 1.8 kb hmgr1 and 0.6 kb hpt genes from all putatively transformed callus lines as well as transgenic plants. Southern blot analysis showed the stable integration and presence of transgene in the transgenic plants. Over expression of hmgr1 transgene was determined by Northern blot hybridization, semi-quantitative PCR and real-time PCR (qRT-PCR) analysis. Accumulation of hmgr1 mRNA transcripts was more abundant in transgenic plants than control. Increased level of photosynthetic pigments, protein contents and HMGR enzyme activity was also noticed in transgenic plants over control. Interestingly, the latex yield was significantly enhanced in all transgenic plants compared to the control. The qRT-PCR results exhibit that the hmgr1 mRNA transcript levels was 160-fold more abundance in transgenic plants over untransformed control. These results altogether suggest that there is a positive correlation between latex yield and accumulation of mRNA transcripts level as well as HMGR enzyme activity in transgenic rubber plants. It is presumed that there is a possibility for enhanced level of latex biosynthesis in transgenic plants as the level of mRNA transcripts and HMGR enzyme activity is directly correlated with latex yield in rubber tree. Further, the present results clearly suggest that the quantification of HMGR enzyme activity in young seedlings will be highly beneficial for early selection of high latex yielding plants in rubber breeding programs.


Assuntos
Hevea , Hidroximetilglutaril-CoA-Redutases NADP-Dependentes , Látex/biossíntese , Proteínas de Plantas , Plantas Geneticamente Modificadas , Hevea/genética , Hevea/metabolismo , Hidroximetilglutaril-CoA-Redutases NADP-Dependentes/biossíntese , Hidroximetilglutaril-CoA-Redutases NADP-Dependentes/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
2.
Plant Cell Rep ; 22(3): 201-9, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14551734

RESUMO

Agrobacterium tumefaciens-mediated genetic transformation and the regeneration of transgenic plants was achieved in Hevea brasiliensis. Immature anther-derived calli were used to develop transgenic plants. These calli were co-cultured with A. tumefaciens harboring a plasmid vector containing the H. brasiliensis superoxide dismutase gene (HbSOD) under the control of the CaMV 35S promoter. The beta-glucuronidase gene (uidA) was used for screening and the neomycin phosphotransferase gene (nptII) was used for selection of the transformed calli. Factors such as co-cultivation time, co-cultivation media and kanamycin concentration were assessed to establish optimal conditions for the selection of transformed callus lines. Transformed calli surviving on medium containing 300 mg l(-1) kanamycin showed a strong GUS-positive reaction. Somatic embryos were then regenerated from these transgenic calli on MS2 medium containing 2.0 mg l(-1) spermine and 0.1 mg l(-1) abscisic acid. Mature embryos were germinated and developed into plantlets on MS4 medium supplemented with 0.2 mg l(-1) gibberellic acid, 0.2 mg l(-1) kinetin (KIN) and 0.1 mg l(-1) indole-3-acetic acid. A transformation frequency of 4% was achieved. The morphology of the transgenic plants was similar to that of untransformed plants. Histochemical GUS assay revealed the expression of the uidA gene in embryos as well as leaves of transgenic plants. The presence of the uidA, nptII and HbSOD genes in the Hevea genome was confirmed by polymerase chain reaction amplification and genomic Southern blot hybridization analyses.


Assuntos
Hevea/fisiologia , Superóxido Dismutase/genética , Transformação Genética , Sequência de Bases , Primers do DNA , Vetores Genéticos , Hevea/embriologia , Hevea/enzimologia , Hevea/genética , Canamicina/farmacologia , Estresse Oxidativo , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Regeneração , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transformação Genética/efeitos dos fármacos , Árvores/enzimologia , Árvores/genética , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...