Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Dis ; 40(10): 1363-1372, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28239935

RESUMO

Siberian sturgeon herpesvirus (SbSHV) was isolated in Russia for the first time in 2006. Nine SbSHV isolates were recovered from different fish hatcheries producing the same cytopathic effect in cell cultures, the same clinical signs and mortality kinetics in virus-infected fish and the same virus neutralization pattern and shared identical nucleotide sequences. In 2011, a new isolate was recovered from juvenile sturgeon, which caused completely different cytopathic effect. That isolate was not readily neutralized by Siberian sturgeon hyperimmune antisera, and its DNA was not recognized by the routine PCR developed for SbSHV detection. Molecular study of the novel isolate revealed that it was more closely related to North American Acipenserid herpesvirus 2 (AciHV-2) isolates from white sturgeon, while the genome sequences of the former SbSHV isolates showed high similarity to the AciHV-2 isolated from shortnose sturgeon. While clinical signs and mortality caused by the novel isolate in infected Siberian sturgeon were similar to those of the formerly described SbSHV isolates, the incubation period and mean time to death produced by the novel isolate were twice as long. The differences between the former isolates and the recent one suggest that a novel SbSHV strain emerged in Europe and the molecular findings imply its North American origin.


Assuntos
Doenças dos Peixes/virologia , Infecções por Herpesviridae/veterinária , Ictalurivirus/fisiologia , Sequência de Aminoácidos , Animais , Aquicultura , Proteínas do Capsídeo/genética , Peixes , Infecções por Herpesviridae/virologia , Ictalurivirus/genética , Federação Russa , Alinhamento de Sequência/veterinária
2.
J Invertebr Pathol ; 127: 21-31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25712900

RESUMO

A herpes-like virus was found infecting the antennal gland and bladder epithelium in the blue king crab Paralithodes platypus from the eastern area of the Sea of Okhotsk. Electron microscopic analysis of antennal gland samples from blue king crabs with histologically confirmed signs of disease revealed virus particles, which were mostly hexagonal in shape and located primarily in the nucleus; these particles were rarely observed in the cytoplasm of infected cells. Most virus particles ranged in size from 115 to 125nm. Hemocytes of the red king crab Paralithodes camtschaticus in cell culture could be experimentally infected with virus from thawed antennal gland samples of the blue king crabs with histologically confirmed signs of viral infection. Clear signs of infection were observed in hemocyte cultures at 3-4days post-inoculation as small foci of highly vacuolated formations. These formations included several nuclei and were surrounded by a halo of small cytoplasmic bubbles containing actin and tubulin. As demonstrated by electron microscopic studies, no virus-like particles were found in the cells 1day post-inoculation, but particles become abundant at 7days post-inoculation. We developed a consensus primer PCR method for amplification of a region of the herpesviral DNA-directed DNA polymerase. Primers were designed to target sequences encoding highly conserved amino acid motifs covering a region of approximately 800bp. Thus, macroscopic, histological and ultra-structural examinations of blue king crabs infected with a virus and the molecular identification of the pathogen revealed the presence of herpesviruses. The frequency of the herpes-like viral infection in natural populations of blue king crabs in the Sea of Okhotsk ranged from 0% to 3% in different years.


Assuntos
Braquiúros/virologia , Herpesviridae/fisiologia , Animais , DNA Viral/análise , Herpesviridae/patogenicidade , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...