Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(3): 1714-1727, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36627834

RESUMO

Exsolution is a recent advancement for fabricating oxide-supported metal nanoparticle catalysts via phase precipitation out of a host oxide. A fundamental understanding and control of the exsolution kinetics are needed to engineer exsolved nanoparticles to obtain higher catalytic activity toward clean energy and fuel conversion. Since oxygen release via oxygen vacancy formation in the host oxide is behind oxide reduction and metal exsolution, we hypothesize that the kinetics of metal exsolution should depend on the kinetics of oxygen release, in addition to the kinetics of metal cation diffusion. Here, we probe the surface exsolution kinetics both experimentally and theoretically using thin-film perovskite SrTi0.65Fe0.35O3 (STF) as a model system. We quantitatively demonstrated that in this system the surface oxygen release governs the metal nanoparticle exsolution kinetics. As a result, by increasing the oxygen release rate in STF, either by reducing the sample thickness or by increasing the surface reactivity, one can effectively accelerate the Fe0 exsolution kinetics. Fast oxygen release kinetics in STF not only shortened the prereduction time prior to the exsolution onset, but also increased the total quantity of exsolved Fe0 over time, which agrees well with the predictions from our analytical kinetic modeling. The consistency between the results obtained from in situ experiments and analytical modeling provides a predictive capability for tailoring exsolution, and highlights the importance of engineering host oxide surface oxygen release kinetics in designing exsolved nanocatalysts.

2.
ACS Appl Mater Interfaces ; 11(38): 34841-34853, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31433149

RESUMO

The oxygen deficiency or excess, as reflected in the nonstoichiometry of oxide films, plays a crucial role in their functional properties for applications such as micro solid oxide fuel cells, catalysis, sensors, ferroelectrics, and memristors. High concentrations of oxygen vacancies may be beneficial or detrimental according to the application, and hence there is interest in controlling the oxygen content of films without resorting to compositional changes. Here, we demonstrate that substantial changes in the nonstoichiometry of Pr0.1Ce0.9O2-δ (PCO), a model mixed ionic electronic conductor, can be achieved by fabricating multilayers with an inert material, SrTiO3 (STO). We fabricated heterostructures using pulsed laser deposition, keeping the total thickness of PCO and STO constant while varying the number of layers and thickness of each individual layer, to probe the effects of the PCO/STO interfaces. Conductivity measurements as a function of oxygen partial pressure (PO2) and temperature showed a significant weakening of the PO2 dependence compared to bulk PCO, which scaled with the density of interfaces. We confirmed that this change was due to variations in nonstoichiometry, by optical transmission measurements, and show that the lower oxygen content is consistent with a decrease in the effective oxygen reduction enthalpy of PCO. These results exemplify the dramatic differences in properties between films and their bulk counterparts, achievable by interface engineering, and provide generalized insight into tailoring the properties of mixed ionic electronic conductors at the nanoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...