Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rice (N Y) ; 17(1): 17, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400956

RESUMO

The advancement of hybrid technology plays a crucial role in addressing yield plateau and diminishing resources in rice cultivating regions. The knowledge of genetic diversity among parental lines is a prerequisite for effective hybrid breeding program. In the current study, a set of 66 parental lines was studied for diversity based on both morphological characters and microsatellite SSR markers. The genetic variability parameters unveiled that number of productive tillers per plant, single plant yield and hundred grain weight exhibited additive gene action. Mahalanobis D2 statistics grouped the genotypes into ten clusters based on yield and grain traits. The principal component analysis identified four PCs with eigen value more than one accounting for 71.28% of cumulative variance. The polymorphic SSR markers produced 122 alleles among which the marker RM474 recorded the highest values for Polymorphic Information Content (0.83) and heterozygosity index (0.85). The genotypes were assembled in seven clusters based on jaccard distances using the Unweighted Pair Group method with Arithmetic Mean (UPGMA). The population structure divided the entire population into 3 subpopulations. In both clustering, there was difference in the assembling of genotypes, but, good performing genotypes identified through PCA were positioned in different clusters in both approaches. The genotypes CBSN 495 and CBSN 494 located in different clusters were identified as the potential restorers for high yielding and short duration hybrids. The hybridization among CRR Dhan 310, CRR Dhan 315, IR64 DRT, CB 17135 and WGL 347 can be performed to develop climate smart varieties with improved nutrition.

3.
Front Plant Sci ; 13: 934296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898221

RESUMO

Pigeonpea, a climate-resilient legume, is nutritionally rich and of great value in Asia, Africa, and Caribbean regions to alleviate malnutrition. Assessing the grain nutrient variability in genebank collections can identify potential sources for biofortification. This study aimed to assess the genetic variability for grain nutrients in a set of 600 pigeonpea germplasms conserved at the RS Paroda Genebank, ICRISAT, India. The field trials conducted during the 2019 and 2020 rainy seasons in augmented design with four checks revealed significant differences among genotypes for all the agronomic traits and grain nutrients studied. The germplasm had a wider variation for agronomic traits like days to 50% flowering (67-166 days), days to maturity (112-213 days), 100-seed weight (1.69-22.17 g), and grain yield per plant (16.54-57.93 g). A good variability was observed for grain nutrients, namely, protein (23.35-29.50%), P (0.36-0.50%), K (1.43-1.63%), Ca (1,042.36-2,099.76 mg/kg), Mg (1,311.01-1,865.65 mg/kg), Fe (29.23-40.98 mg/kg), Zn (24.14-35.68 mg/kg), Mn (8.56-14.01 mg/kg), and Cu (7.72-14.20 mg/kg). The germplasm from the Asian region varied widely for grain nutrients, and the ones from African region had high nutrient density. The significant genotype × environment interaction for most of the grain nutrients (except for P, K, and Ca) indicated the sensitivity of nutrient accumulation to the environment. Days to 50% flowering and days to maturity had significant negative correlation with most of the grain nutrients, while grain yield per plant had significant positive correlation with protein and magnesium, which can benefit simultaneous improvement of agronomic traits with grain nutrients. Clustering of germplasms based on Ward.D2 clustering algorithm revealed the co-clustering of germplasm from different regions. The identified top 10 nutrient-specific and 15 multi-nutrient dense landraces can serve as promising sources for the development of biofortified lines in a superior agronomic background with a broad genetic base to fit the drylands. Furthermore, the large phenotypic data generated in this study can serve as a raw material for conducting SNP/haplotype-based GWAS to identify genetic variants that can accelerate genetic gains in grain nutrient improvement.

4.
J Appl Genet ; 49(3): 221-7, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18670057

RESUMO

Exploitation of hybrid vigour is quite possible in cross-pollinated crops. However, pigeonpea is a grain legume crop with a moderate level of cross-pollination (20-70%), which is mainly aided by insect pollinators. As a first step, hybrids based on genetic male sterility (GMS) were developed in pigeonpea, but the hybrid seed production technique is not farmer-friendly, because in the hybrid seed production plot 50% of the population, which are male-fertile in the female rows, have to be eliminated in time before contamination. This requires skilled labour and is a time-consuming process, which increases the cost of hybrid seed production. Therefore, the objective of this study was to develop cytoplasmic-genetic male-sterile (CGMS) lines in pigeonpea through wide hybridization, which would be very suitable for hybrid seed production. Two CGMS lines, viz. CORG 990052 A and CORG 990047, were developed by interspecific hybridization of Cajanus cajan and C. scarabaeoides. Restorers were identified and three CGMS-based pigeonpea hybrids were developed. The hybrid COPH 3 is found to be promising in Tamil Nadu State, India.


Assuntos
Cajanus/genética , Cruzamentos Genéticos , Citoplasma/genética , Vigor Híbrido , Infertilidade/genética , Sementes/genética , Cajanus/classificação , Cajanus/crescimento & desenvolvimento , Hibridização Genética , Índia , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...