Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Physiol ; 109(4): 549-561, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461483

RESUMO

Changes in myonuclear architecture and positioning are associated with exercise adaptations and ageing. However, data on the positioning and number of myonuclei following exercise are inconsistent. Additionally, whether myonuclear domains (MNDs; i.e., the theoretical volume of cytoplasm within which a myonucleus is responsible for transcribing DNA) and myonuclear positioning are altered with age remains unclear. The aim of this investigation was to investigate relationships between age and activity status and myonuclear domains and positioning. Vastus lateralis muscle biopsies from younger endurance-trained (YT) and older endurance-trained (OT) individuals were compared with age-matched untrained counterparts (YU and OU; OU samples were acquired during surgical operation). Serial, optical z-slices were acquired throughout isolated muscle fibres and analysed to give three-dimensional coordinates for myonuclei and muscle fibre dimensions. The mean cross-sectional area (CSA) of muscle fibres from OU individuals was 33%-53% smaller compared with the other groups. The number of nuclei relative to fibre CSA was 90% greater in OU compared with YU muscle fibres. Additionally, scaling of MND volume with fibre size was altered in older untrained individuals. The myonuclear arrangement, in contrast, was similar across groups. Fibre CSA and most myonuclear parameters were significantly associated with age in untrained individuals, but not in trained individuals. These data indicate that regular endurance exercise throughout the lifespan might better preserve the size of muscle fibres in older age and maintain the relationship between fibre size and MND volumes. Inactivity, however, might result in reduced muscle fibre size and altered myonuclear parameters.


Assuntos
Envelhecimento , Fibras Musculares Esqueléticas , Humanos , Idoso , Fibras Musculares Esqueléticas/fisiologia , Núcleo Celular , Músculo Quadríceps , Terapia por Exercício , Músculo Esquelético
2.
Circ Res ; 133(3): 255-270, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37401464

RESUMO

BACKGROUND: Increasing cardiomyocyte contraction during myocardial stretch serves as the basis for the Frank-Starling mechanism in the heart. However, it remains unclear how this phenomenon occurs regionally within cardiomyocytes, at the level of individual sarcomeres. We investigated sarcomere contractile synchrony and how intersarcomere dynamics contribute to increasing contractility during cell lengthening. METHODS: Sarcomere strain and Ca2+ were simultaneously recorded in isolated left ventricular cardiomyocytes during 1 Hz field stimulation at 37 °C, at resting length and following stepwise stretch. RESULTS: We observed that in unstretched rat cardiomyocytes, differential sarcomere deformation occurred during each beat. Specifically, while most sarcomeres shortened during the stimulus, ≈10% to 20% of sarcomeres were stretched or remained stationary. This nonuniform strain was not traced to regional Ca2+ disparities but rather shorter resting lengths and lower force production in systolically stretched sarcomeres. Lengthening of the cell recruited additional shortening sarcomeres, which increased contractile efficiency as less negative, wasted work was performed by stretched sarcomeres. Given the known role of titin in setting sarcomere dimensions, we next hypothesized that modulating titin expression would alter intersarcomere dynamics. Indeed, in cardiomyocytes from mice with titin haploinsufficiency, we observed greater variability in resting sarcomere length, lower recruitment of shortening sarcomeres, and impaired work performance during cell lengthening. CONCLUSIONS: Graded sarcomere recruitment directs cardiomyocyte work performance, and harmonization of sarcomere strain increases contractility during cell stretch. By setting sarcomere dimensions, titin controls sarcomere recruitment, and its lowered expression in haploinsufficiency mutations impairs cardiomyocyte contractility.


Assuntos
Miócitos Cardíacos , Sarcômeros , Ratos , Camundongos , Animais , Sarcômeros/metabolismo , Conectina/genética , Conectina/metabolismo , Miócitos Cardíacos/metabolismo , Contração Miocárdica/fisiologia , Miocárdio/metabolismo
3.
Am J Physiol Cell Physiol ; 325(1): C172-C185, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37212546

RESUMO

Specific force (SF) has been shown to be reduced in some but not all studies of human aging using chemically skinned single muscle fibers. This may be due, in part, not only to the health status/physical activity levels of different older cohorts, but also from methodological differences in studying skinned fibers. The aim of the present study was to compare SF in fibers from older hip fracture patients (HFP), healthy master cyclists (MC), and healthy nontrained young adults (YA) using two different activating solutions. Quadriceps muscle samples and 316 fibers were obtained from HFPs (74.6 ± 4 years, n = 5), MCs (74.8 ± 1, n = 5), and YA (25.5 ± 2, n = 6). Fibers were activated (pCa 4.5, 15°C) in solutions containing either 60 mM N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid pH buffer (TES) or 20 mM imidazole. SF was determined by normalizing force to fiber cross-sectional area (CSA) assuming either an elliptical or circular shape and to fiber myosin heavy chain content. Activation in TES resulted in significantly higher MHC-I SF in all groups and YA MHC-IIA fibers, irrespective of normalization method. Although there were no differences in SF between the participant groups, the ratio of SF between the TES and imidazole solutions was lower in HFPs compared with YAs (MHC-I P < 0.05; MHC-IIA P = 0.055). Activating solution composition, as opposed to donor characteristics, had a more notable effect on single fiber SF. However, this two-solution approach revealed an age-related difference in sensitivity in HFPs, which was not shown in MCs. This suggests further novel approaches may be required to probe age/activity-related differences in muscle contractile quality.NEW & NOTEWORTHY Whether specific force (SF) decreases with advancing age in human single skeletal muscle fibers is uncertain. Equivocal published findings may be due to the different physical activity levels of the elderly cohorts studied and/or different chemical solutions used to measure force. We compared single fiber SF between young adults, elderly cyclists, and hip fracture patients (HFP) using two solutions. The solution used significantly affected force and revealed a difference in sensitivity of HFP muscle fibers.


Assuntos
Contração Muscular , Fibras Musculares Esqueléticas , Adulto Jovem , Humanos , Idoso , Contração Muscular/fisiologia , Cadeias Pesadas de Miosina , Envelhecimento , Músculo Quadríceps , Músculo Esquelético/fisiologia
4.
Acta Physiol (Oxf) ; 233(3): e13719, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34286921

RESUMO

Chemically skinned fibres allow the study of human muscle contractile function in vitro. A particularly important parameter is specific force (SF), that is, maximal isometric force divided by cross-sectional area, representing contractile quality. Although SF varies substantially between studies, the magnitude and cause of this variability remains puzzling. Here, we aimed to summarize and explore the cause of variability in SF between studies. A systematic search was conducted in Medline, Embase and Web of Science databases in June 2020, yielding 137 data sets from 61 publications which studied healthy, young adults. Five-fold differences in mean SF data were observed. Adjustments to the reported data for key methodological differences allowed between-study comparisons to be made. However, adjustment for fibre shape, swelling and sarcomere length failed to significantly reduce SF variance (I2 = 96%). Interestingly, grouping papers based on shared authorship did reveal consistency within research groups. In addition, lower SF was found to be associated with higher phosphocreatine concentrations in the fibre activating solution and with Triton X-100 being used as a skinning agent. Although the analysis showed variance across the literature, the ratio of SF in single fibres containing myosin heavy chain isoforms IIA or I was found to be consistent across research groups. In conclusion, whilst the skinned fibre technique is reliable for studying in vitro force generation of single fibres, the composition of the solution used to activate fibres, which differs between research groups, is likely to heavily influence SF values.


Assuntos
Contração Muscular , Fibras Musculares Esqueléticas , Humanos , Isoformas de Proteínas , Sarcômeros , Pele , Adulto Jovem
5.
J Exp Biol ; 216(Pt 15): 2974-82, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23580727

RESUMO

Muscle samples were taken from the gluteus, semitendinosus and longissimus muscles of a captive cheetah immediately after euthanasia. Fibres were 'skinned' to remove all membranes, leaving the contractile filament array intact and functional. Segments of skinned fibres from these cheetah muscles and from rabbit psoas muscle were activated at 20°C by a temperature-jump protocol. Step and ramp length changes were imposed after active stress had developed. The stiffness of the non-contractile ends of the fibres (series elastic component) was measured at two different stress values in each fibre; stiffness was strongly dependent on stress. Using these stiffness values, the speed of shortening of the contractile component was evaluated, and hence the power it was producing. Fibres were analysed for myosin heavy chain content using gel electrophoresis, and identified as either slow (type I) or fast (type II). The power output of cheetah type II fibre segments was 92.5±4.3 W kg(-1) (mean ± s.e., 14 fibres) during shortening at relative stress 0.15 (the stress during shortening/isometric stress). For rabbit psoas fibre segments (presumably type IIX) the corresponding value was significantly higher (P<0.001), 119.7±6.2 W kg(-1) (mean ± s.e., 7 fibres). These values are our best estimates of the maximum power output under the conditions used here. Thus, the contractile filament power from cheetah was less than that of rabbit when maximally activated at 20°C, and does not account for the superior locomotor performance of the cheetah.


Assuntos
Acinonyx/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Animais , Fenômenos Biomecânicos , Elasticidade , Feminino , Técnicas In Vitro , Modelos Lineares , Masculino , Contração Muscular/fisiologia , Coelhos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...