Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Physiol ; 19: 187-193, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33718693

RESUMO

Converging interactions between ascending proprioceptive afferents and descending corticospinal tract projections are critical in the modulation and coordination of skilled motor behaviors. Fundamental to these processes are the functional inputs and the mechanisms of integration in the brain and spinal cord between proprioceptive and corticospinal tract information. In this review, we first highlight key connections between corticospinal tract motor circuit and spinal interneurons that receive proprioceptive inputs. We will also address corticospinal tract access to the presynaptic inhibitory system in the spinal cord and its role in modulating proprioceptive stimuli. Lastly, we will focus on the corticospinal neuron influences on the dorsal column nuclei complex, an integration hub for processing ascending somatosensory information.

2.
J Comp Neurol ; 528(4): 559-573, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31502243

RESUMO

The barrel cortex is within the primary somatosensory cortex of the rodent, and processes signals from the vibrissae. Much focus has been devoted to the function of neurons, more recently, the role of glial cells in the processing of sensory input has gained increasing interest. Microglia are the principal immune cells of the nervous system that survey and regulate the cellular constituents of the dynamic nervous system. We investigated the normal and disrupted development of microglia in barrel cortex by chronically depriving sensory signals via whisker trimming for the animals' first postnatal month. Using immunohistochemistry to label microglia, we performed morphological reconstructions as well as densitometry analyses as a function of developmental age and sensory experience. Findings suggest that both developmental age and sensory experience has profound impact on microglia morphology. Following chronic sensory deprivation, microglia undergo a morphological transition from a monitoring or resting state to an altered morphological state, by exhibiting expanded cell body size and retracted processes. Sensory restoration via whisker regrowth returns these morphological alterations back to age-matched control values. Our results indicate that microglia may be recruited to participate in the modulation of neuronal structural remodeling during developmental critical periods and in response to alteration in sensory input.


Assuntos
Microglia/fisiologia , Plasticidade Neuronal/fisiologia , Privação Sensorial/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento , Vibrissas/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos , Microglia/química , Córtex Somatossensorial/química , Córtex Somatossensorial/citologia , Vibrissas/inervação
3.
Science ; 357(6349): 400-404, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28751609

RESUMO

Superior manual dexterity in higher primates emerged together with the appearance of cortico-motoneuronal (CM) connections during the evolution of the mammalian corticospinal (CS) system. Previously thought to be specific to higher primates, we identified transient CM connections in early postnatal mice, which are eventually eliminated by Sema6D-PlexA1 signaling. PlexA1 mutant mice maintain CM connections into adulthood and exhibit superior manual dexterity as compared with that of controls. Last, differing PlexA1 expression in layer 5 of the motor cortex, which is strong in wild-type mice but weak in humans, may be explained by FEZF2-mediated cis-regulatory elements that are found only in higher primates. Thus, species-dependent regulation of PlexA1 expression may have been crucial in the evolution of mammalian CS systems that improved fine motor control in higher primates.


Assuntos
Lateralidade Funcional/genética , Regulação da Expressão Gênica , Córtex Motor/metabolismo , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tratos Piramidais/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Mutantes , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas , Receptores de Superfície Celular/genética , Semaforinas/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...