Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(42): 95634-95647, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37556058

RESUMO

Today, diazinon is one of the most widely used organophosphorus pesticides, whose widespread use can cause many ecological and biological risks. In this research, a magnetic ZnO/Fe3O4 nanoparticle was used to investigate the photocatalytic degradation of diazinon. Sol-gel synthesis was used to create the nanoparticle, which was then characterized using XRD, FTIR, FESEM, VSM, and XPS techniques. The design of photocatalytic degradation experiments was done using the response surface method and the Box-Behnken design model. The investigated parameters include pH, nanoparticle concentration, diazinon concentration, and irradiation time. The characterization of the ZnO/Fe3O4 nanoparticle showed well-formed crystalline phases and a cubic spinel structure. Additionally, the shape of the nanoparticle is almost uniform and spherical. The FT-IR spectrum also confirmed the presence of all functional groups related to ZnO and Fe3O4 in the ZnO/Fe3O4 nanoparticles structure. The synthesized nanocomposite has superparamagnetic properties and a very small coercive field, making it easily recyclable, according to a VSM analysis. XPS results also showed the presence of Fe (Fe 2p1/2 and Fe 2p3/2), Zn (Zn 2p1/2 and Zn 2p3/2), oxygen (O1s), and weak carbon (C1s) peaks in the ZnO/Fe3O4 structure. The results of the photocatalytic optimization experiments showed that the highest efficiency of diazinon toxin degradation is 99.3% under the conditions of pH 7, diazinon initial concentration of 10 mg/L, nanoparticle concentration of 1 g/L, and a contact time of 90 min. This result is very close to the BBD model's predicted removal efficiency under optimal conditions (100%). As a result, the ZnO/Fe3O4 nanocomposite can produce active free radicals through UV radiation, and these radicals can successfully remove diazinon under actual conditions.


Assuntos
Nanopartículas de Magnetita , Praguicidas , Óxido de Zinco , Diazinon , Óxido de Zinco/química , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos Organofosforados , Luz , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...