Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(1): 118-128, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38153102

RESUMO

This article reports quantitative absorption spectra for MoCl5, MoOCl4, and MoO2Cl2 in the vapor phase from 45,500 to 15,500 cm-1 (645 to 220 nm). Spectra are obtained in an ultrahigh purity stainless steel vacuum system by rapidly sampling a range of analyte partial pressures. The short measurement times and the differential absorbance method employed here minimize effects from uncontrolled transients such as window deposits. A detailed analysis of replicate measurements and time-resolved spectra shows generally reproducible spectral response from MoCl5 vapors at 120 °C. The presence of HCl and MoOCl4 impurities in the MoCl5 vapor samples is determined to be unlikely based on the analysis of absorbance-pressure curves and spectral peak fitting. Comparison with MoOCl4 and MoO2Cl2 spectra shows a unique spectral fingerprint for MoCl5 at 28,500 cm-1 providing a convenient means of discriminating between MoCl5 and its oxychlorides in the visible wavelengths. Adsorption behavior of MoCl5 on surfaces is also discussed with particular emphasis on the use of MoCl5 as a reactant in vapor phase thin film deposition processes.

2.
Environ Sci Technol ; 56(9): 5448-5455, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35441513

RESUMO

This study demonstrates that commonly used consumer products such as single-use food grade nylon bags and hot beverage cups lined with low-density polyethylene release nanometer-sized plastic particles at number densities >1012 L-1 when exposed to water. The number of particles released was a function of the initial water temperature (high temperature vs ambient) for each of the tested materials. Mean particle diameters were between 30 and 80 nm with few particles >200 nm. The number of particles released into hot water from food grade nylon was 7 times higher when compared to single-use beverage cups. On a particle number density basis, particles released into water from a single 300 mL hot beverage cup equate to one particle for every seven cells in the human body in a size range available for cellular uptake.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Humanos , Nylons , Plásticos , Água , Poluentes Químicos da Água/análise
3.
Appl Spectrosc ; 72(9): 1396-1403, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29756992

RESUMO

Silicon wafer-based internal reflection elements (IREs) present many practical advantages over the prisms conventionally used for attenuated total reflection (ATR) spectroscopy in the infrared. We examine two methods of using minimally prepared IREs that have appeared in the literature, edge-coupled (EC) and prism-coupled (PC), in conjunction with a liquid flow cell. Polarization measurements show that radiation entering the PC-IRE becomes depolarized due to stress-induced birefringence, and transmission through the edge of the EC-IRE also affects the polarization state. Quantification of the noise and a calibration using a series of sodium acetate solutions show the sensitivity of the PC-IRE outweighs the lower noise obtainable with the EC-IRE.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33281278

RESUMO

Potential commercial applications for transition metal dichalcogenide (TMD) semiconductors such as MoS2 rely on unique material properties that are only accessible at monolayer to few-layer thickness regimes. Therefore, production methods that lend themselves to scalable and controllable formation of TMD films on surfaces are desirable for high volume manufacturing of devices based on these materials. We have developed a new thermal atomic layer deposition (ALD) process using bis(tert-butylimido)-bis(dimethylamido)molybdenum and 1-propanethiol to produce MoS2-containing amorphous films. We observe self-limiting reaction behavior with respect to both the Mo and S precursors at a substrate temperature of 350 °C. Film thickness scales linearly with precursor cycling, with growth per cycle values of ≈0.1 nm/cycle. As-deposited films are smooth and contain nitrogen and carbon impurities attributed to poor ligand elimination from the Mo source. Upon high-temperature annealing, a large portion of the impurities are removed, and we obtain few-layer crystalline 2H-MoS2 films.

5.
Chem Mater ; 29(15): 6279-6288, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-29545674

RESUMO

High volume manufacturing of devices based on transition metal dichalcogenide (TMD) ultra-thin films will require deposition techniques that are capable of reproducible wafer-scale growth with monolayer control. To date, TMD growth efforts have largely relied upon sublimation and transport of solid precursors with minimal control over vapor phase flux and gas-phase chemistry, which are critical for scaling up laboratory processes to manufacturing settings. To address these issues, we report a new pulsed metalorganic chemical vapor deposition (MOCVD) route for MoS2 film growth in a research-grade single-wafer reactor. Using bis(tert-butylimido)-bis(dimethylamido)molybdenum and diethyl disulfide we deposit MoS2 films from ≈ 1 nm to ≈ 25 nm in thickness on SiO2/Si substrates. We show that layered 2H-MoS2 can be produced at comparatively low reaction temperatures of 591 °C at short deposition times, approximately 90 s for few-layer films. In addition to the growth studies performed on SiO2/Si, films with wafer-level uniformity are demonstrated on 50 mm quartz wafers. Process chemistry and impurity incorporation from precursors are also discussed. This low-temperature and fast process highlights the opportunities presented by metalorganic reagents in the controlled synthesis of TMDs.

6.
Chem Mater ; 29(20): 8804-8810, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29545675

RESUMO

In situ chemical measurements of solution/surface reactions during metal-organic framework (MOF) thin film growth can provide valuable information about the mechanistic and kinetic aspects of key reaction steps, and allow control over crystal quality and material properties. Here, we report a new approach to study the growth of MOF thin films in a flow cell using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Real-time spectra recorded during continuous flow synthesis were used to investigate the mechanism and kinetics that govern the formation of (Zn, Cu) hydroxy double salts (HDSs) from ZnO thin films and the subsequent conversion of HDS to HKUST-1. We found that both reactions follow pseudo-first order kinetics. Real-time measurements also revealed that the limited mass transport of reactants may lead to partial conversion of ZnO to HDS and therefore leaves an interfacial ZnO layer beneath the HDS film providing strong adhesion of the HKUST-1 coating to the substrate. This in situ flow-cell ATR-FTIR method is generalizable for studying the dynamic processes of MOF thin film growth, and could be used for other solid/liquid reaction systems involving thin films.

7.
ACS Nano ; 10(10): 9626-9636, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27704774

RESUMO

We study the crystal symmetry of few-layer 1T' MoTe2 using the polarization dependence of the second harmonic generation (SHG) and Raman scattering. Bulk 1T' MoTe2 is known to be inversion symmetric; however, we find that the inversion symmetry is broken for finite crystals with even numbers of layers, resulting in strong SHG comparable to other transition-metal dichalcogenides. Group theory analysis of the polarization dependence of the Raman signals allows for the definitive assignment of all the Raman modes in 1T' MoTe2 and clears up a discrepancy in the literature. The Raman results were also compared with density functional theory simulations and are in excellent agreement with the layer-dependent variations of the Raman modes. The experimental measurements also determine the relationship between the crystal axes and the polarization dependence of the SHG and Raman scattering, which now allows the anisotropy of polarized SHG or Raman signal to independently determine the crystal orientation.

8.
ACS Nano ; 10(3): 3580-8, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26866442

RESUMO

When designing semiconductor heterostructures, it is expected that epitaxial alignment will facilitate low-defect interfaces and efficient vertical transport. Here, we report lattice-matched epitaxial growth of molybdenum disulfide (MoS2) directly on gallium nitride (GaN), resulting in high-quality, unstrained, single-layer MoS2 with strict registry to the GaN lattice. These results present a promising path toward the implementation of high-performance electronic devices based on 2D/3D vertical heterostructures, where each of the 3D and 2D semiconductors is both a template for subsequent epitaxial growth and an active component of the device. The MoS2 monolayer triangles average 1 µm along each side, with monolayer blankets (merged triangles) exhibiting properties similar to that of single-crystal MoS2 sheets. Photoluminescence, Raman, atomic force microscopy, and X-ray photoelectron spectroscopy analyses identified monolayer MoS2 with a prominent 20-fold enhancement of photoluminescence in the center regions of larger triangles. The MoS2/GaN structures are shown to electrically conduct in the out-of-plane direction, confirming the potential of directly synthesized 2D/3D semiconductor heterostructures for vertical current flow. Finally, we estimate a MoS2/GaN contact resistivity to be less than 4 Ω·cm(2) and current spreading in the MoS2 monolayer of approximately 1 µm in diameter.

9.
Langmuir ; 32(3): 743-50, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26716469

RESUMO

Using atomic force microscopy, the nanofriction coefficient was measured systematically for a series of liquids on planar graphite, silica and mica surfaces. This allows us to explore the quantitative interplay between nanofriction at liquid-solid interfaces and interfacial wetting. A corresponding states theory analysis shows that the nanofriction coefficient, µ = dF(F)/dF(N), where FF is the friction force and FN is the normal force, is a function of three dimensionless parameters that reflect the intermolecular forces involved and the structure of the solid substrate. Of these, we show that one parameter in particular, ß = ρ(s)Δ(s)σ(ls)(2), where ρ(s) is the atomic density of the solid, Δ(s) is the spacing between layers of solid atoms, and σ(ls) is the molecular diameter that characterizes the liquid-substrate interaction, is very important in determining the friction coefficient. This parameter ß, which we term the structure adhesion parameter, provides a measure of the intermolecular interaction between a liquid molecule and the substrate and also of the surface area of contact of the liquid molecule with the substrate. We find a linear dependence of µ on the structure adhesion parameter for the systems studied. We also find that increasing ß leads to an increase in the vertical adhesion forces FA (the attractive force exerted by the solid surface on the liquid film). Our quantitative relationship between the nanofriction coefficient and the key parameter ß which governs the vertical adhesive strength, opens up an opportunity for describing liquid flows on solid surfaces at the molecular level, with implications for the development of membrane and nanofluidic devices.

10.
J Am Chem Soc ; 136(27): 9773-9, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24933178

RESUMO

Light-driven dehydrogenation of benzyl alcohol (BnOH) to benzaldehyde and hydrogen has been shown to occur in a dye-sensitized photoelectrosynthesis cell (DSPEC). In the DSPEC, the photoanode consists of mesoporous films of TiO2 nanoparticles or of core/shell nanoparticles with tin-doped In2O3 nanoparticle (nanoITO) cores and thin layers of TiO2 deposited by atomic layer deposition (nanoITO/TiO2). Metal oxide surfaces were coderivatized with both a ruthenium polypyridyl chromophore in excess and an oxidation catalyst. Chromophore excitation and electron injection were followed by cross-surface electron-transfer activation of the catalyst to -Ru(IV)═O(2+), which then oxidizes benzyl alcohol to benzaldehyde. The injected electrons are transferred to a Pt electrode for H2 production. The nanoITO/TiO2 core/shell structure causes a decrease of up to 2 orders of magnitude in back electron-transfer rate compared to TiO2. At the optimized shell thickness, sustained absorbed photon to current efficiency of 3.7% was achieved for BnOH dehydrogenation, an enhancement of ~10 compared to TiO2.

11.
Nano Lett ; 14(6): 3255-61, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24846703

RESUMO

Core-shell structures consisting of thin shells of conformal TiO2 deposited on high surface area, conductive Sn-doped In2O3 nanoparticle. Mesoscopic films were synthesized by atomic layer deposition and studied for application in dye-sensitized solar cells. Results obtained with the N719 dye show that short-circuit current densities, open-circuit voltages, and back electron transfer lifetimes all increased with increasing TiO2 shell thickness up to 1.8-2.4 nm and then decline as the thickness was increased further. At higher shell thicknesses, back electron transfer to -Ru(III) is increasingly competitive with transport to the nanoITO core resulting in decreased device efficiencies.

12.
Proc Natl Acad Sci U S A ; 110(50): 20008-13, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24277806

RESUMO

Artificial photosynthesis and the production of solar fuels could be a key element in a future renewable energy economy providing a solution to the energy storage problem in solar energy conversion. We describe a hybrid strategy for solar water splitting based on a dye sensitized photoelectrosynthesis cell. It uses a derivatized, core-shell nanostructured photoanode with the core a high surface area conductive metal oxide film--indium tin oxide or antimony tin oxide--coated with a thin outer shell of TiO2 formed by atomic layer deposition. A "chromophore-catalyst assembly" 1, [(PO3H2)2bpy)2Ru(4-Mebpy-4-bimpy)Rub(tpy)(OH2)](4+), which combines both light absorber and water oxidation catalyst in a single molecule, was attached to the TiO2 shell. Visible photolysis of the resulting core-shell assembly structure with a Pt cathode resulted in water splitting into hydrogen and oxygen with an absorbed photon conversion efficiency of 4.4% at peak photocurrent.


Assuntos
Técnicas Eletroquímicas/métodos , Luz , Modelos Químicos , Processos Fotoquímicos , Energia Solar , Água/química , Catálise , Fatores de Tempo , Titânio/química
13.
Proc Natl Acad Sci U S A ; 110(52): 20918-22, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24277824

RESUMO

Enhancing the surface binding stability of chromophores, catalysts, and chromophore-catalyst assemblies attached to metal oxide surfaces is an important element in furthering the development of dye sensitized solar cells, photoelectrosynthesis cells, and interfacial molecular catalysis. Phosphonate-derivatized catalysts and molecular assemblies provide a basis for sustained water oxidation on these surfaces in acidic solution but are unstable toward hydrolysis and loss from surfaces as the pH is increased. Here, we report enhanced surface binding stability of a phosphonate-derivatized water oxidation catalyst over a wide pH range (1-12) by atomic layer deposition of an overlayer of TiO2. Increased stability of surface binding, and the reactivity of the bound catalyst, provides a hybrid approach to heterogeneous catalysis combining the advantages of systematic modifications possible by chemical synthesis with heterogeneous reactivity. For the surface-stabilized catalyst, greatly enhanced rates of water oxidation are observed upon addition of buffer bases -H2PO(-)(4)/HPO(2-)(4), B(OH)3/B(OH)2 O-, HPO(2-)4 /PO(3-)(4) - and with a pathway identified in which O-atom transfer to OH(-) occurs with a rate constant increase of 10(6) compared to water oxidation in acid.


Assuntos
Eletrodos , Nanoestruturas/química , Compostos de Estanho/química , Água/química , Catálise , Técnicas Eletroquímicas , Concentração de Íons de Hidrogênio , Modelos Químicos , Estrutura Molecular , Oxirredução , Propriedades de Superfície , Titânio/química
14.
Nat Commun ; 4: 2630, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24129680

RESUMO

Selective thermal emission in a useful range of energies from a material operating at high temperatures is required for effective solar thermophotovoltaic energy conversion. Three-dimensional metallic photonic crystals can exhibit spectral emissivity that is modified compared with the emissivity of unstructured metals, resulting in an emission spectrum useful for solar thermophotovoltaics. However, retention of the three-dimensional mesostructure at high temperatures remains a significant challenge. Here we utilize self-assembled templates to fabricate high-quality tungsten photonic crystals that demonstrate unprecedented thermal stability up to at least 1,400 °C and modified thermal emission at solar thermophotovoltaic operating temperatures. We also obtain comparable thermal and optical results using a photonic crystal comprising a previously unstudied material, hafnium diboride, suggesting that refractory metallic ceramic materials are viable candidates for photonic crystal-based solar thermophotovoltaic devices and should be more extensively studied.

15.
Nano Lett ; 13(10): 4802-9, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23978281

RESUMO

Device lifetimes and commercial viability of dye-sensitized solar cells (DSSCs) and dye-sensitized photoelectrosynthesis cells (DSPECs) are dependent on the stability of the surface bound molecular chromophores and catalysts. Maintaining the integrity of the solution-metal oxide interface is especially challenging in DSPECs for water oxidation where it is necessary to perform high numbers of turnovers, under irradiation in an aqueous environment. In this study, we describe the atomic layer deposition (ALD) of TiO2 on nanocrystalline TiO2 prefunctionalized with the dye molecule [Ru(bpy)2(4,4'-(PO3H2)bpy)](2+) (RuP) as a strategy to stabilize surface bound molecules. The resulting films are over an order of magnitude more photostable than untreated films and the desorption rate constant exponentially decreases with increased thickness of ALD TiO2 overlayers. However, the injection yield for TiO2-RuP with ALD TiO2 also decreases with increasing overlayer thickness. The combination of decreased injection yield and 95% quenched emission suggests that the ALD TiO2 overlayer acts as a competitive electron acceptor from RuP*, effectively nonproductively quenching the excited state. The ALD TiO2 also increases back electron transfer rates, relative to the untreated film, but is independent of overlayer thickness. The results for TiO2-RuP with an ALD TiO2 overlayer are compared with similar films having ALD Al2O3 overlayers.


Assuntos
Catálise , Energia Solar , Titânio/química , Fontes de Energia Elétrica , Transporte de Elétrons , Oxirredução , Água/química
16.
ACS Appl Mater Interfaces ; 5(11): 5253-9, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23724894

RESUMO

Low-temperature vapor-phase tungsten atomic layer deposition (ALD) using WF6 and dilute silane (SiH4, 2% in Ar) can yield highly conductive coatings on nylon-6 microfiber mats, producing flexible and supple nonwovens with conductivity of ∼1000 S/cm. We find that an alumina nucleation layer, reactant exposure, and deposition temperature all influence the rate of W mass uptake on 3D fibers, and film growth rate is calibrated using high surface area anodic aluminum oxide. Transmission electron microscopy (TEM) reveals highly conformal tungsten coatings on nylon fibers with complex "winged" cross-section. Using reactant gas "hold" sequences during the ALD process, we conclude that reactant species can transport readily to reactive sites throughout the fiber mat, consistent with conformal uniform coverage observed by TEM. The conductivity of 1000 S/cm for the W-coated nylon is much larger than found in other conductive nonwovens. We also find that the nylon mats maintain 90% of their conductivity after being flexed around cylinders with radii as small as 0.3 cm. Metal ALD coatings on nonwovens make possible the solvent-free functionalization of textiles for electronic applications.


Assuntos
Técnicas Biossensoriais/métodos , Caprolactama/análogos & derivados , Eletrônica Médica/métodos , Nanofibras/química , Polímeros/química , Tungstênio/química , Óxido de Alumínio/química , Caprolactama/química , Condutividade Elétrica , Microscopia Eletrônica de Transmissão , Têxteis
17.
Nano Lett ; 13(4): 1481-8, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23537229

RESUMO

Photoelectrochemical (PEC) water splitting and solar fuels hold great promise for harvesting solar energy. TiO2-based photoelectrodes for water splitting have been intensively investigated since 1972. However, solar-to-fuel conversion efficiencies of TiO2 photoelectrodes are still far lower than theoretical values. This is partially due to the dilemma of a short minority carrier diffusion length, and long optical penetration depth, as well as inefficient electron collection. We report here the synthesis of TiO2 PEC electrodes by coating solution-processed antimony-doped tin oxide nanoparticle films (nanoATO) on FTO glass with TiO2 through atomic layer deposition. The conductive, porous nanoATO film-supported TiO2 electrodes, yielded a highest photocurrent density of 0.58 mA/cm(2) under AM 1.5G simulated sunlight of 100 mW/cm(2). This is approximately 3× the maximum photocurrent density of planar TiO2 PEC electrodes on FTO glass. The enhancement is ascribed to the conductive interconnected porous nanoATO film, which decouples the dimensions for light absorption and charge carrier diffusion while maintaining efficient electron collection. Transient photocurrent measurements showed that nanoATO films reduce charge recombination by accelerating transport of photoelectrons through the less defined conductive porous nanoATO network. Owing to the large band gap, scalable solution processed porous nanoATO films are promising as a framework to replace other conductive scaffolds for PEC electrodes.


Assuntos
Energia Solar , Compostos de Estanho/química , Titânio/química , Coloides/química , Eletroquímica/métodos , Eletrodos , Nanopartículas/química , Água/química
18.
Nanoscale ; 4(15): 4731-8, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22751846

RESUMO

Quartz fibers provide a unique high surface-area substrate suitable for conformal coating using atomic layer deposition (ALD), and are compatible with high temperature annealing. This paper shows that the quartz fiber composition stabilizes ALD TiO(2) in the anatase phase through TiO(2)-SiO(2) interface formation, even after annealing at 1050 °C. When integrated into a dye-sensitized solar cell, the TiO(2)-coated quartz fiber mat improves light scattering performance. Results also confirm that annealing at high temperature is necessary for better photoactivity of ALD TiO(2), which highlights the significance of quartz fibers as a substrate. The ALD TiO(2) coating on quartz fibers also boosts dye adsorption and photocurrent response, pushing the overall efficiency of the dye-cells from 6.5 to 7.4%. The mechanisms for improved cell performance are confirmed using wavelength-dependent incident photon to current efficiency and diffuse light scattering results. The combination of ALD and thermal processing on quartz fibers may enable other device structures for energy conversion and catalytic reaction applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...