Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(20): eadj5428, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748789

RESUMO

High-grade serous ovarian cancer (HGSC) is a challenging disease, especially for patients with immunologically "cold" tumors devoid of tumor-infiltrating lymphocytes (TILs). We found that HGSC exhibits among the highest levels of MYCN expression and transcriptional signature across human cancers, which is strongly linked to diminished features of antitumor immunity. N-MYC repressed basal and induced IFN type I signaling in HGSC cell lines, leading to decreased chemokine expression and T cell chemoattraction. N-MYC inhibited the induction of IFN type I by suppressing tumor cell-intrinsic STING signaling via reduced STING oligomerization, and by blunting RIG-I-like receptor signaling through inhibition of MAVS aggregation and localization in the mitochondria. Single-cell RNA sequencing of human clinical HGSC samples revealed a strong negative association between cancer cell-intrinsic MYCN transcriptional program and type I IFN signaling. Thus, N-MYC inhibits tumor cell-intrinsic innate immune signaling in HGSC, making it a compelling target for immunotherapy of cold tumors.


Assuntos
Imunidade Inata , Interferon Tipo I , Neoplasias Ovarianas , Transdução de Sinais , Humanos , Feminino , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Interferon Tipo I/metabolismo , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/imunologia , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Gradação de Tumores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética
2.
Sci Rep ; 13(1): 6530, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085560

RESUMO

Unlike other histological types of epithelial ovarian carcinoma, clear cell ovarian carcinoma (CCOC) has poor response to therapy. In many other carcinomas, expression of the hypoxia-related enzyme Carbonic anhydrase IX (CAIX) by cancer cells is associated with poor prognosis, while the presence of CD8 + tumor-infiltrating lymphocytes (TIL) is positively prognostic. We employed [18F]EF5-PET/CT imaging, transcriptome profiling, and spatially-resolved histological analysis to evaluate relationships between CAIX, CD8, and survival in CCOC. Tissue microarrays (TMAs) were evaluated for 218 cases in the Canadian COEUR study. Non-spatial relationships between CAIX and CD8 were investigated using Spearman rank correlation, negative binomial regression and gene set enrichment analysis. Spatial relationships at the cell level were investigated using the cross K-function. Survival analysis was used to assess the relationship of CAIX and CD8 with patient survival for 154 cases. CD8 + T cell infiltration positively predicted survival with estimated hazard ratio 0.974 (95% CI 0.950, 1000). The negative binomial regression analysis found a strong TMA effect (p-value < 0.0001). It also indicated a negative association between CD8 and CAIX overall (p-value = 0.0171) and in stroma (p-value = 0.0050) but not in tumor (p-value = 0.173). Examination of the spatial association between the locations of CD8 + T cells and CAIX cells found a significant amount of heterogeneity in the first TMA, while in the second TMA there was a clear signal indicating negative spatial association in stromal regions. These results suggest that hypoxia may contribute to immune exclusion, primarily mediated by effects in stroma.


Assuntos
Linfócitos T CD8-Positivos , Hipóxia , Linfócitos do Interstício Tumoral , Neoplasias Ovarianas , Feminino , Humanos , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Canadá , Anidrase Carbônica IX , Anidrases Carbônicas/metabolismo , Hipóxia/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Prognóstico
3.
Nat Genet ; 55(3): 437-450, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36849657

RESUMO

High-grade serous ovarian cancer (HGSC) is frequently characterized by homologous recombination (HR) DNA repair deficiency and, while most such tumors are sensitive to initial treatment, acquired resistance is common. We undertook a multiomics approach to interrogate molecular diversity in end-stage disease, using multiple autopsy samples collected from 15 women with HR-deficient HGSC. Patients had polyclonal disease, and several resistance mechanisms were identified within most patients, including reversion mutations and HR restoration by other means. We also observed frequent whole-genome duplication and global changes in immune composition with evidence of immune escape. This analysis highlights diverse evolutionary changes within HGSC that evade therapy and ultimately overwhelm individual patients.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Multiômica , Carcinoma Epitelial do Ovário , Recombinação Homóloga/genética , Cistadenocarcinoma Seroso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...