Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 10: 1244, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649706

RESUMO

Seed mutagenesis is one strategy to create a population with thousands of useful mutations for the direct selection of desirable traits, to introduce diversity into varietal improvement programs, or to generate a mutant collection to support gene functional analysis. However, phenotyping such large collections, where each individual may carry many mutations, is a bottleneck for downstream analysis. Targeting Induced Local Lesions in Genomes (TILLinG), when coupled with next-generation sequencing allows high-throughput mutation discovery and selection by genotyping. We mutagenized an advanced durum breeding line, UAD0951096_F2:5 and performed short-read (2x125 bp) Illumina sequencing of the exome of 100 lines using an available exome capture platform. To improve variant calling, we generated a consolidated exome reference using the recently available genome sequences of the cultivars Svevo and Kronos to facilitate the alignment of reads from the UAD0951096_F2:5 derived mutants. The resulting exome reference was 484.4 Mbp. We also developed a user-friendly, searchable database and bioinformatic analysis pipeline that allowed us to predict zygosity of the mutations discovered and extracts flanking sequences for rapid marker development. Here, we present these tools with the aim of allowing researchers fast and accurate downstream selection of mutations discovered by TILLinG by sequencing to support functional annotation of the durum wheat genome.

2.
BMC Genomics ; 19(1): 941, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30558550

RESUMO

BACKGROUND: Democratising the growing body of whole genome sequencing data available for Triticum aestivum (bread wheat) has been impeded by the lack of a genome reference and the large computational requirements for analysing these data sets. RESULTS: DAWN (Diversity Among Wheat geNomes) integrates data from the T. aestivum Chinese Spring (CS) IWGSC RefSeq v1.0 genome with public WGS and exome data from 17 and 62 accessions respectively, enabling researchers and breeders alike to investigate genotypic differences between wheat accessions at the level of whole chromosomes down to individual genes. CONCLUSIONS: Using DAWN we show that it is possible to visualise small and large chromosomal deletions, identify haplotypes at a glance and spot the consequences of selective breeding. DAWN allows us to detect the break points of alien introgression segments brought into an accession when transferring desired genes. Furthermore, we can find possible explanations for reduced recombination in parts of a chromosome, we can predict regions with linkage drag, and also look at diversity in centromeric regions.


Assuntos
Bases de Dados Genéticas , Genoma de Planta , Triticum/genética , Centrômero/genética , Genótipo , Haplótipos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sequenciamento do Exoma
3.
Sci Rep ; 8(1): 17087, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459322

RESUMO

Non-specific Lipid Transfer Proteins (nsLTPs) are involved in numerous biological processes. To date, only a fraction of wheat (Triticum aestivum L.) nsLTPs (TaLTPs) have been identified, and even fewer have been functionally analysed. In this study, the identification, classification, phylogenetic reconstruction, chromosome distribution, functional annotation and expression profiles of TaLTPs were analysed. 461 putative TaLTPs were identified from the wheat genome and classified into five types (1, 2, C, D and G). Phylogenetic analysis of the TaLTPs along with nsLTPs from Arabidopsis thaliana and rice, showed that all five types were shared across species, however, some type 2 TaLTPs formed wheat-specific clades. Gene duplication analysis indicated that tandem duplications contributed to the expansion of this gene family in wheat. Analysis of RNA sequencing data showed that TaLTPs were expressed in most tissues and stages of wheat development. Further, we refined the expression profile of anther-enriched expressed genes, and identified potential cis-elements regulating their expression specificity. This analysis provides a valuable resource towards elucidating the function of TaLTP family members during wheat development, aids our understanding of the evolution and expansion of the TaLTP gene family and, additionally, provides new information for developing wheat male-sterile lines with application to hybrid breeding.


Assuntos
Proteínas de Transporte/análise , Proteínas de Transporte/metabolismo , Genoma de Planta , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Triticum/genética , Triticum/crescimento & desenvolvimento
4.
Plant Mol Biol ; 92(3): 293-312, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27511191

RESUMO

KEY MESSAGE: We found metabolites, enzyme activities and enzyme transcript abundances vary significantly across the maize lifecycle, but weak correlation exists between the three groups. We identified putative genes regulating nitrate assimilation. Progress in improving nitrogen (N) use efficiency (NUE) of crop plants has been hampered by the complexity of the N uptake and utilisation systems. To understand this complexity we measured the activities of seven enzymes and ten metabolites related to N metabolism in the leaf and root tissues of Gaspe Flint maize plants grown in 0.5 or 2.5 mM NO3 (-) throughout the lifecycle. The amino acids had remarkably similar profiles across the lifecycle except for transient responses, which only appeared in the leaves for aspartate or in the roots for asparagine, serine and glycine. The activities of the enzymes for N assimilation were also coordinated to a certain degree, most noticeably with a peak in root activity late in the lifecycle, but with wide variation in the activity levels over the course of development. We analysed the transcriptional data for gene sets encoding the measured enzymes and found that, unlike the enzyme activities, transcript levels of the corresponding genes did not exhibit the same coordination across the lifecycle and were only weakly correlated with the levels of various amino acids or individual enzyme activities. We identified gene sets which were correlated with the enzyme activity profiles, including seven genes located within previously known quantitative trait loci for enzyme activities and hypothesise that these genes are important for the regulation of enzyme activities. This work provides insights into the complexity of the N assimilation system throughout development and identifies candidate regulatory genes, which warrant further investigation in efforts to improve NUE in crop plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Zea mays/genética , Zea mays/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Locos de Características Quantitativas/genética , Zea mays/enzimologia , Zea mays/crescimento & desenvolvimento
5.
Plant Biotechnol J ; 14(1): 342-53, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26038196

RESUMO

Elucidation of the gene networks underlying the response to N supply and demand will facilitate the improvement of the N uptake efficiency of plants. We undertook a transcriptomic analysis of maize to identify genes responding to both a non-growth-limiting decrease in NO3- provision and to development-based N demand changes at seven representative points across the life cycle. Gene co-expression networks were derived by cluster analysis of the transcript profiles. The majority of NO3--responsive transcription occurred at 11 (D11), 18 (D18) and 29 (D29) days after emergence, with differential expression predominating in the root at D11 and D29 and in the leaf at D18. A cluster of 98 probe sets was identified, the expression pattern of which is similar to that of the high-affinity NO3- transporter (NRT2) genes across the life cycle. The cluster is enriched with genes encoding enzymes and proteins of lipid metabolism and transport, respectively. These are candidate genes for the response of maize to N supply and demand. Only a few patterns of differential gene expression were observed over the entire life cycle; however, the composition of the classes of the genes differentially regulated at individual time points was unique, suggesting tightly controlled regulation of NO3--responsive gene expression.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nitratos/farmacologia , Transcrição Gênica/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Zea mays/efeitos dos fármacos
6.
BMC Genomics ; 10: 285, 2009 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-19558723

RESUMO

BACKGROUND: Barley and particularly wheat are two grass species of immense agricultural importance. In spite of polyploidization events within the latter, studies have shown that genotypically and phenotypically these species are very closely related and, indeed, fertile hybrids can be created by interbreeding. The advent of two genome-scale Affymetrix GeneChips now allows studies of the comparison of their transcriptomes. RESULTS: We have used the Wheat GeneChip to create a "gene expression atlas" for the wheat transcriptome (cv. Chinese Spring). For this, we chose mRNA from a range of tissues and developmental stages closely mirroring a comparable study carried out for barley (cv. Morex) using the Barley1 GeneChip. This, together with large-scale clustering of the probesets from the two GeneChips into "homologous groups", has allowed us to perform a genomic-scale comparative study of expression patterns in these two species. We explore the influence of the polyploidy of wheat on the results obtained with the Wheat GeneChip and quantify the correlation between conservation in gene sequence and gene expression in wheat and barley. In addition, we show how the conservation of expression patterns can be used to elucidate, probeset by probeset, the reliability of the Wheat GeneChip. CONCLUSION: While there are many differences in expression on the level of individual genes and tissues, we demonstrate that the wheat and barley transcriptomes appear highly correlated. This finding is significant not only because given small evolutionary distance between the two species it is widely expected, but also because it demonstrates that it is possible to use the two GeneChips for comparative studies. This is the case even though their probeset composition reflects rather different design principles as well as, of course, the present incomplete knowledge of the gene content of the two species. We also show that, in general, the Wheat GeneChip is not able to distinguish contributions from individual homoeologs. Furthermore, the comparison between the two species leads us to conclude that the conservation of both gene sequence as well as gene expression is positively correlated with absolute expression levels, presumably reflecting increased selection pressure on genes coding for proteins present at high levels. In addition, the results indicate the presence of a correlation between sequence and expression conservation within the Triticeae.


Assuntos
Hibridização Genômica Comparativa , Perfilação da Expressão Gênica/métodos , Hordeum/genética , Triticum/genética , Genoma de Planta , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...