Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 12(3): 2193-2200, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29381853

RESUMO

Bottom-up graphene nanoribbon (GNR) heterojunctions are nanoscale strips of graphene whose electronic structure abruptly changes across a covalently bonded interface. Their rational design offers opportunities for profound technological advancements enabled by their extraordinary structural and electronic properties. Thus far, the most critical aspect of their synthesis, the control over sequence and position of heterojunctions along the length of a ribbon, has been plagued by randomness in monomer sequences emerging from step-growth copolymerization of distinct monomers. All bottom-up GNR heterojunction structures created so far have exhibited random sequences of heterojunctions and, while useful for fundamental scientific studies, are difficult to incorporate into functional nanodevices as a result. In contrast, we describe a hierarchical fabrication strategy that allows the growth of bottom-up GNRs that preferentially exhibit a single heterojunction interface rather than a random statistical sequence of junctions along the ribbon. Such heterojunctions provide a viable platform that could be directly used in functional GNR-based device applications at the molecular scale. Our hierarchical GNR fabrication strategy is based on differences in the dissociation energies of C-Br and C-I bonds that allow control over the growth sequence of the block copolymers from which GNRs are formed and consequently yields a significantly higher proportion of single-junction GNR heterostructures. Scanning tunneling spectroscopy and density functional theory calculations confirm that hierarchically grown heterojunctions between chevron GNR (cGNR) and binaphthyl-cGNR segments exhibit straddling Type I band alignment in structures that are only one atomic layer thick and 3 nm in width.

2.
J Am Chem Soc ; 140(2): 807-813, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29243927

RESUMO

A series of trigonal planar N-, O-, and S-dopant atoms incorporated along the convex protrusion lining the edges of bottom-up synthesized chevron graphene nanoribbons (cGNRs) induce a characteristic shift in the energy of conduction and valence band edge states along with a significant reduction of the band gap of up to 0.3 eV per dopant atom per monomer. A combination of scanning probe spectroscopy and density functional theory calculations reveals that the direction and the magnitude of charge transfer between the dopant atoms and the cGNR backbone are dominated by inductive effects and follow the expected trend in electronegativity. The introduction of heteroatom dopants with trigonal planar geometry ensures an efficient overlap of a p-orbital lone-pair centered on the dopant atom with the extended π-system of the cGNR backbone effectively extending the conjugation length. Our work demonstrates a widely tunable method for band gap engineering of graphene nanostructures for advanced electronic applications.


Assuntos
Grafite/química , Nanotubos de Carbono/química , Substâncias Macromoleculares , Nanoestruturas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...