Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(18): 12313-12322, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38633501

RESUMO

The study presents a novel, one-pot, and scalable solid-state reaction scheme to prepare bismuth sulphide (Bi2S3)-reduced graphene oxide (rGO) nanocomposites using bismuth oxide (Bi2O3), thiourea (TU), and graphene oxide (GO) as starting materials for energy storage applications. The impact of GO loading concentration on the electrochemical performance of the nanocomposites was investigated. The reaction follows a diffusion substitution pathway, gradually transforming Bi2O3 powder into Bi2S3 nanostrips, concurrently converting GO into rGO. Enhanced specific capacitances were observed across all nanocomposite samples, with the Bi2S3@0.2rGO exhibiting the highest specific capacitance of 705 F g-1 at a current density of 1 A g-1 and maintaining a capacitance retention of 82% after 1000 cycles. The superior specific capacitance is attributed to the excellent homogeneity and synergistic relation between rGO and Bi2S3 nanostrips. This methodology holds promise for extending the synthesis of other chalcogenides-rGO nanocomposites.

2.
RSC Adv ; 13(50): 35369-35378, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38053692

RESUMO

Herein, we demonstrated the in situ synthesis of g-C3N4/Ti3C2Tx nano-heterostructures for hydrogen generation under UV visible light irradiation. The formation of the g-C3N4/Ti3C2Tx nano-heterostructures was confirmed via powder X-ray diffraction and supported by XPS. The FE-SEM images indicated the formation of layered structures of MXene and g-C3N4. HR-TEM images and SAED patterns confirmed the presence of g-C3N4 together with Ti3C2Tx nanosheets, i.e., the formation of nano-heterostructures of g-C3N4/Ti3C2Tx. The absorption spectra clearly showed the distinct band gaps of g-C3N4 and Ti3C2Tx in the nano-heterostructure. The increase in PL intensity and broadening of the peak with an increase in g-C3N4 indicated the suppression of electron-hole recombination. Furthermore, the nano-heterostructure was used as a photocatalyst for H2 generation from water and methylene blue dye degradation. The highest H2 evolution (1912.25 µmol/0.1 g) with good apparent quantum yield (3.1%) and an efficient degradation of MB were obtained for gCT-0.75, which was much higher compared to that of the pristine materials. The gCT-0.75 nano-heterostructure possessed a high surface area and abundant vacancy defects, facilitating the separation of charge carriers, which was ultimately responsible for this high photocatalytic activity. Additionally, TRPL clearly showed a higher decay time, which supports the enhancement in the photocatalytic activity of the gCT-0.75 nano-heterostructure. The nano-heterostructure with the optimum concentration of g-C3N4 formed a hetero-junction with the linked catalytic system, which facilitated efficient charge carrier separation also responsible for the enhanced photocatalytic activity.

3.
Biomater Adv ; 134: 112592, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35527134

RESUMO

The present study demonstrates lignin (L), fragments of lignin (FL), and oxidized fragmented lignin (OFL) as templates for the synthesis of zinc oxide nanoparticles (ZnO NPs) viz., lignin-ZnO (L-ZnO), hierarchical FL-ZnO, and OFL-ZnO NPs. The X-ray diffraction patterns confirmed the formation of phase pure ZnO NPs with a hexagonal wurtzite structure. Electron microscopy confirmed the hierarchical structures with one-dimensional arrays of ZnO NPs with an average particle diameter of 40 nm. The as-synthesized L-ZnO, FL-ZnO, and OFL-ZnO NPs were tested in-vitro for growth and virulence inhibition (morphogenesis and biofilm) in Candida albicans. L-ZnO, FL-ZnO, and OFL-ZnO NPs all inhibited growth and virulence. Growth and virulence inhibitions were highest (more than 90%, respectively at 125, 31.2, and 62.5 µg/mL) in presence of FL-ZnO NPs, indicating that the hierarchical FL-ZnO NPs were potent growth and virulence inhibiting agent than non-hierarchical ZnO NPs. Furthermore, the real-time polymerase chain (RT-PCR) was used to study the virulence inhibition molecular mechanisms of L-ZnO, FL-ZnO, and OFL-ZnO NPs. RT-PCR results showed that the downregulation of phr1, phr2, efg1, hwp1, ras1, als3 and als4, and the upregulation of bcy1, nrg1, and tup1 genes inhibited the virulence in C. albicans. Lastly, we also performed in-vitro test cell cytotoxicity on the cell line, mouse embryo 3T3L1, and in-vivo toxicity on Rats, which showed that FL-ZnO NPs were biocompatible and nontoxic.


Assuntos
Biofilmes , Candida albicans , Nanopartículas , Óxido de Zinco , Animais , Biofilmes/efeitos dos fármacos , Candida albicans/metabolismo , Lignina , Camundongos , Nanopartículas/química , Ratos , Óxido de Zinco/farmacologia
4.
Dalton Trans ; 51(15): 6027-6035, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35352748

RESUMO

Developing efficient, low-cost, and environment-friendly electrocatalysts for hydrogen generation is critical for lowering energy usage in electrochemical water splitting. Moreover, for commercialization, fabricating cost-efficient, earth-abundant electrocatalysts with superior characteristics is of urgent need. Towards this endeavor, we report the synthesis of PANI-MnMoO4 nanocomposites using a hydrothermal approach and an in situ polymerization method with various concentrations of MnMoO4. The fabricated nanocomposite electrocatalyst exhibits bifunctional electrocatalytic activity towards the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) at a lower overpotential of 410 mV at 30 mA cm-2 and 155 mV at 10 mA cm-2, respectively in an alkaline electrolyte. Furthermore, while showing overall water splitting (OWS) performance, the optimized PM-10 (PANI-MnMoO4) electrode reveals the most outstanding OWS performance with a lower cell voltage of 1.65 V (vs. RHE) at a current density of 50 mA cm-2 with an excellent long-term cell resilience of 24 h.

5.
ACS Omega ; 6(24): 15686-15697, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34179612

RESUMO

Currently, the limited availability of lithium sources is escalating the cost of lithium-ion batteries (LIBs). Considering the fluctuating economics of LIBs, sodium-ion batteries (SIBs) have now drawn attention because sodium is an earth-abundant, low-cost element that exhibits similar chemistry to that of LIBs. Despite developments in different anode materials, there still remain several challenges in SIBs, including lighter cell design for SIBs. The presented work designs a facile strategy to prepare nitrogen-doped free-standing pseudo-graphitic nanofibers via electrospinning. A structural and morphological study implies highly disordered graphitic structured nanofibers having diameters of ∼120-170 nm, with a smooth surface. X-ray photoelectron spectroscopy analysis showed that nitrogen was successfully doped in carbon nanofibers (CNFs). When served as an anode material for SIBs, the resultant material exhibits excellent sodium-ion storage properties in terms of long-term cycling stability and high rate capability. Notably, a binder-free self-standing CNF without a current collector was used as an anode for SIBs that delivered capacities of 210 and 87 mA h g-1 at 20 and 1600 mA g-1, respectively, retaining a capacity of 177 mA h g-1 when retained at 20 mA g-1. The as-synthesized CNFs demonstrate a long cycle life with a relatively high Columbic efficiency of 98.6% for the 900th cycle, with a stable and excellent rate capacity. The sodium storage mechanisms of the CNFs were examined with various nitrogen concentrations and carbonization temperatures. Furthermore, the diffusion coefficients of the sodium ions based on the electrochemical impedance spectra measurement have been calculated in the range of 10-15-10-12 cm2 s-1, revealing excellent diffusion mobility for Na atoms in the CNFs. This study demonstrates that optimum nitrogen doping and carbonization temperature demonstrated a lower Warburg coefficient and a higher Na-ion diffusion coefficient leads to enhanced stable electrochemical performance. Thus, our study shows that the nitrogen-doped CNFs will have potential for SIBs.

6.
Nanoscale Adv ; 3(2): 508-516, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36131732

RESUMO

Constructing a heterostructure is an effective strategy to reduce the electron-hole recombination rate, which enhances photocatalytic activity. Here, we report a facile hydrothermal method to grow CdS nanoparticles on MnWO4 nanorods and their photocatalytic hydrogen generation under solar light. A structural study shows the decoration of hexagonal CdS nanoparticles on monoclinic MnWO4. Morphological studies based on FE-TEM analysis confirm the sensitization of CdS nanoparticles (10 nm) on MnWO4 nanorods of diameter-35 nm with mean length ∼100 nm. The lower PL intensity of MnWO4 was observed with an increasing amount of CdS nanoparticles, which shows inhibition of the charge carrier recombination rate. A CdS@MnWO4 narrow band gap semiconductor was employed for photocatalytic hydrogen generation from water under solar light and the highest amount of hydrogen, i.e. 3218 µmol h-1 g-1, is obtained which is 21 times higher than that with pristine MnWO4. The enhanced photocatalytic activity is ascribed to the formation of a CdS@MnWO4 nanoheterostructure resulting in efficient spatial separation of photogenerated electron-hole pairs due to vacancy defects. More significantly, direct Z-scheme electron transfer from MnWO4 to CdS is responsible for the enhanced hydrogen evolution. This work signifies that a CdS decorated MnWO4 nanoheterostructure has the potential to improve the solar to direct fuel conversion efficiency.

7.
Nanoscale Adv ; 3(16): 4799-4803, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36134324

RESUMO

We have developed MoS2 nanosheets and CdMoS4 hierarchical nanostructures based on a UV light photodetector. The surface morphologies of the as-prepared samples were investigated via field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The performance parameters for the present photodetectors are investigated under the illumination of UV light having a wavelength of ∼385 nm. Upon the illumination of UV light, the CdMoS4-based photodetector device showed a better response to UV light compared to the MoS2 device in terms of photoresponsivity, response time (∼72 s) and recovery time (∼94 s). Our results reveal that CdMoS4 hierarchical nanostructures are practical for enhancing the device performance.

8.
RSC Adv ; 11(48): 29877-29886, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-35480278

RESUMO

Herein, we report Sn3O4 and Sn3O4 nanoflake/graphene for photocatalytic hydrogen generation from H2O and H2S under natural "sunlight" irradiation. The Sn3O4/graphene composites were prepared by a simple hydrothermal method at relatively low temperatures (150 °C). The incorporation of graphene in Sn3O4 exhibits remarkable improvement in solar light absorption, with improved photoinduced charge separation due to formation of the heterostructure. The highest photocatalytic hydrogen production rate for the Sn3O4/graphene nanoheterostructure was observed as 4687 µmol h-1 g-1 from H2O and 7887 µmol h-1 g-1 from H2S under natural sunlight. The observed hydrogen evolution is much higher than that for pure Sn3O4 (5.7 times that from H2O, and 2.2 times from H2S). The improved photocatalytic activity is due to the presence of graphene, which acts as an electron collector and transporter in the heterostructure. More significantly, the Sn3O4 nanoflakes are uniformly and parallel grown on the graphene surface, which accelerates the fast transport of electrons due to the short diffusion distance. Such a unique morphology for the Sn3O4 along with the graphene provides more adsorption sites, which are effective for photocatalytic reactions under solar light. This work suggests an effective strategy towards designing the surfaces of various oxides with graphene nanoheterostructures for high performance of energy-conversion devices.

9.
RSC Adv ; 11(13): 7587-7599, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35423264

RESUMO

Highly crystalline anatase titanium dioxide (TiO2) nanocuboids were synthesized via a hydrothermal method using ethylenediamine tetraacetic acid as a capping agent. The structural study revealed the nanocrystalline nature of anatase TiO2 nanocuboids. Morphological study indicates the formation of cuboid shaped particles with thickness of ∼5 nm and size in the range of 10-40 nm. The UV-visible absorbance spectra of TiO2 nanocuboids showed a broad absorption with a tail in the visible-light region which is attributed to the incorporation of nitrogen atoms into the interstitial positions of the TiO2 lattice as well as the formation of carbonaceous and carbonate species on the surface of TiO2 nanocuboids. The specific surface areas of prepared TiO2 nanocuboids were found to be in the range of 85.7-122.9 m2 g-1. The formation mechanism of the TiO2 nanocuboids has also been investigated. Furthermore, the photocatalytic activities of the as-prepared TiO2 nanocuboids were evaluated for H2 generation via water splitting under UV-vis light irradiation and compared with the commercial anatase TiO2. TiO2 nanocuboids obtained at 200 °C after 48 h exhibited higher photocatalytic activity (3866.44 µmol h-1 g-1) than that of commercial anatase TiO2 (831.30 µmol h-1 g-1). The enhanced photoactivity of TiO2 nanocuboids may be due to the high specific surface area, good crystallinity, extended light absorption in the visible region and efficient charge separation.

10.
RSC Adv ; 11(24): 14399-14407, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35423991

RESUMO

The novel marigold flower like SiO2@ZnIn2S4 nano-heterostructure was fabricated using an in situ hydrothermal method. The nanoheterostructure exhibits hexagonal structure with marigold flower like morphology. The porous marigold flower assembly was constructed using ultrathin nanosheets. Interestingly, the thickness of the nanopetal was observed to be 5-10 nm and tiny SiO2 nanoparticles (5-7 nm) are decorated on the surface of the nanopetals. As the concentration of SiO2 increases the deposition of SiO2 nanoparticles on ZnIn2S4 nanopetals increases in the form of clusters. The optical study revealed that the band gap lies in the visible range of the solar spectrum. Using X-ray photoelectron spectroscopy (XPS), the chemical structure and valence states of the as-synthesized SiO2@ZnIn2S4 nano-heterostructure were confirmed. The photocatalytic activities of the hierarchical SiO2@ZnIn2S4 nano-heterostructure for hydrogen evolution from H2S under natural sunlight have been investigated with regard to the band structure in the visible region. The 0.75% SiO2@ZnIn2S4 showed a higher photocatalytic activity (6730 µmol-1 h-1 g-1) for hydrogen production which is almost double that of pristine ZnIn2S4. Similarly, the hydrogen production from water splitting was observed to be 730 µmol-1 h-1 g-1. The enhanced photocatalytic activity is attributed to the inhibition of charge carrier separation owing to the hierarchical morphology, heterojunction and crystallinity of the SiO2@ZnIn2S4.

11.
RSC Adv ; 11(32): 19531-19540, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35479220

RESUMO

A SnO2/Ni/CNT nanocomposite was synthesized using a simple one-step hydrothermal method followed by calcination. A structural study via XRD shows that the tetragonal rutile structure of SnO2 is maintained. Further, X-ray photoelectron spectroscopy (XPS) and Raman studies confirm the existence of SnO2 along with CNTs and Ni nanoparticles. The electrochemical performance was investigated via cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements. The nanocomposite has been used as an anode material for lithium-ion batteries. The SnO2/Ni/CNT nanocomposite exhibited an initial discharge capacity of 5312 mA h g-1 and a corresponding charge capacity of 2267 mA h g-1 during the first cycle at 50 mA g-1. Pristine SnO2 showed a discharge/charge capacity of 1445/636 mA h g-1 during the first cycle at 50 mA g-1. This clearly shows the effects of the optimum concentrations of CNTs and Ni. Further, the nanocomposite (SnNiCn) shows a discharge capacity as high as 919 mA h g-1 after 210 cycles at a current density of 400 mA g-1 in a Li-ion battery set-up. Thus, the obtained capacity from the nanocomposite is much higher compared to pristine SnO2. The higher capacity in the nanoheterostructure is due to the well-dispersed nanosized Ni-decorated stabilized SnO2 along with the CNTs, avoiding pulverization as a result of the volumetric change of the nanoparticles being minimized. The material accommodates huge volume expansion and avoids the agglomeration of nanoparticles during the lithiation and delithiation processes. The Ni nanoparticles can successfully inhibit Sn coarsening during cycling, resulting in the enhancement of stability during reversible conversion reactions. They ultimately enhance the capacity, giving stability to the nanocomposite and improving performance. Additionally, the material exhibits a lower Warburg coefficient and higher Li ion diffusion coefficient, which in turn accelerate the interfacial charge transfer process; this is also responsible for the enhanced stable electrochemical performance. A detailed mechanism is expressed and elaborated on to provide a better understanding of the enhanced electrochemical performance.

12.
Nanoscale Adv ; 2(2): 823-832, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36133231

RESUMO

Significant efforts continue to be directed toward the construction of anode materials with high specific capacity and long cycling stability for lithium-ion batteries (LIBs). In this context, silicon is preferred due to its high capacity even though it has a problem of excessive volume expansion during electrochemical reactions as well as poor cyclability due to a reduction in conductivity. Hence, the hybridization of silicon with suitable materials could be a promising approach to overcome the abovementioned problems. Herein, we demonstrate the uniform decoration of nickel oxide (NiO) nanoparticles (15-20 nm) on silicon nanosheets using bis(cyclopentadienyl) nickel(ii) (C10H10Ni) at low temperatures, taking advantage of the presence of two unpaired electrons in an antibonding orbital in the cyclopentadienyl group. The formation and growth mechanism are discussed in detail. The electrochemical study of the nanocomposite revealed an initial delithiation capacity of 2507 mA h g-1 with a reversible capacity of 2162 mA h g-1, having 86% retention and better cycling stability for up to 500 cycles. At the optimum concentration, NiO nanoparticles facilitate Li+-ion adsorption, which in turn accelerates the transport of Li+-ions to active sites of silicon. The Warburg coefficient and Li+-ion diffusion at the electrodes confirm the enhancement in the charge transfer process at the electrode/electrolyte interface with NiO nanoparticles. Further, the NiO nanoparticles with uniform distribution suppress the agglomeration of Si nanosheets and provide sufficient space to accommodate a volume change in Si during cycling, which also reduces the diffusion path length of the Li-ions. It also helps to strengthen the mechanical stability, which might be helpful in preventing the cracking of silicon due to volume expansion and maintains the Li-ion transport pathway of the active material, resulting in enhanced cycling stability. Due to the synergic effect between NiO nanoparticles and Si sheets, the nanocomposite delivers high reversible capacity.

13.
Nanoscale Adv ; 2(6): 2577-2586, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-36133357

RESUMO

Herein, we report the in situ single-step hydrothermal synthesis of hierarchical 2D SnS@ZnIn2S4 nano-heterostructures and the examination of their photocatalytic activity towards hydrogen generation from H2S and water under sunlight. The photoactive sulfides rationally integrate via strong electrostatic interactions between ZnIn2S4 and SnS with two-dimensional ultrathin subunits, i.e. nanopetals. The morphological study of nano-heterostructures revealed that the hierarchical marigold flower-like structure is self-assembled via the nanopetals of ZnIn2S4 with few layers of SnS nanopetals. Surprisingly, it also showed that the SnS nanopetals with a thickness of ∼25 nm couple in situ with the nanopetals of ZnIn2S4 with a thickness of ∼25 nm to form a marigold flower-like assembly with intimate contact. Considering the unique band gap (2.0-2.4 eV) of this SnS@ZnIn2S4, photocatalytic hydrogen generation from water and H2S was performed under sunlight. SnS@ZnIn2S4 exhibits enhanced hydrogen evolution, i.e. 650 µmol h-1 g-1 from water and 6429 µmol h-1 g-1 from H2S, which is much higher compared to that of pure ZnIn2S4 and SnS. More significantly, the enhancement in hydrogen generation is 1.6-2 times more for H2S splitting and 6 times more for water splitting. SnS@ZnIn2S4 forms type I band alignment, which accelerates charge separation during the surface reaction. Additionally, this has been provoked by the nanostructuring of the materials. Due to the nano-heterostructure with hierarchical morphology, the surface defects increased which ultimately suppresses the recombination of the electron-hole pair. The above-mentioned facts demonstrate a significant improvement in the interface electron transfer kinetics due to such a unique 2D nano-heterostructure semiconductor which is responsible for a higher photocatalytic activity.

14.
Sci Rep ; 9(1): 12036, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427636

RESUMO

The hierarchical nanostructured CdS@MoS2 core shell was architectured using template free facile solvothermal technique. More significantly, the typical hexagonal phase of core CdS and shell MoS2 has been obtained. Optical study clearly shows the two steps absorption in the visible region having band gap of 2.4 eV for CdS and 1.77 eV for MoS2. The FESEM of CdS@MoS2 reveals the formation of CdS microsphere (as a core) assemled with 40-50 nm nanoparticles and covered with ultrathin nanosheets of MoS2 (Shell) having size 200-300 nm and the 10-20 nm in thickness. The overall size of the core shell structure is around 8 µm. Intially, there is a formation of CdS microsphre due to high affinity of Cd ions with sulfur and further growth of MoS2 thin sheets on the surface. Considering band gap ideally in visible region, photocatalytic hydrogen evolution using CdS@MoS2 core shell was investigated under natural sunlight. The utmost hydrogen evolution rate achieved for core shell is 416.4 µmole h-1 with apparent quantum yield 35.04%. The photocatalytic activity suggest that an intimate interface contact, extended visible light absorption and effective photo generated charge carrier separation contributed to the photocatalytic enhancement of the CdS@MoS2 core shell. Additional, the enhanced hole trapping process and effective electrons transfer from CdS to MoS2 in CdS@MoS2 core shell heterostructures can significantly contribute for photocatalytic activity. Such core shell heterostructure will also have potential in thin film solar cell and other microelectronic devices.

15.
Langmuir ; 35(28): 9213-9218, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31264883

RESUMO

In this work, a fresh approach has been proposed for the efficient transfer of gold nanoparticles (AuNPs) from an aqueous to organic phase by the metathesis reaction or anion exchange reaction. Here, we synthesized ionic liquid 1-butyl 3-hexadecyl imidazolium bromide [C4C16Im]Br-stabilized AuNPs which exhibit excellent stability in solution. Transfer of Au@[C4C16Im]Br from an aqueous to organic phase was investigated by the metathesis reaction with different hydrophobic ionic liquid-forming salts such as LiNTf2, LiClO4, and KPF6. The anionic exchange process in ionic liquids at the AuNP surface to make hydrophilic to hydrophobic AuNPs is demonstrated. It was found that hydrophobic ionic liquids provide the most effective transfer of AuNPs from the aqueous to organic phase. Interestingly, we have noticed no change in color, size, and shape of AuNPs for more than a month, indicating more efficient transfer of AuNPs in organic solvents, which remained stable for over a month. The ionic liquids with anions NTf2-, ClO4-, and PF6- make the AuNP surface hydrophobic, indicating their good dispersibility in nonpolar solvents. Finally, these AuNPs exhibit excellent sensitivity toward the refractive index of organic solvents, which is correlated with the surface plasmon resonance (SPR) λSPR bands.

16.
RSC Adv ; 9(8): 4226-4238, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35520159

RESUMO

A dark-coloured effluent called "spent wash" is generated as an unwanted product in sugarcane-based alcohol distilleries. Most distilleries discharge this effluent into soil or water without any treatment, causing water and soil pollution. Herein, we report chromium-doped TiO2 (Cr-TiO2) as a photocatalyst for the degradation of spent wash colour under natural sunlight. Cr-doped TiO2 nanoparticles were prepared using an aqueous titanium peroxide-based sol-gel method with titanium isopropoxide as the Ti precursor and chromium nitrate as the Cr precursor. To observe the effect of dopant on sol-gel behaviour and physicochemical properties, the Cr concentration was varied in the range 0.5-5 wt%. The crystallization temperature and time were optimized to obtain the required phase of Cr-TiO2. The physicochemical characteristics of the Cr-doped TiO2 catalyst were determined using X-ray diffraction, FE-SEM, FETEM, TG, XPS, the Brunauer-Emmett-Teller (BET) method, FT-IR, Raman, PL, ICP-MS, and UV visible spectroscopy. A shift in the absorption edge of TiO2 by doping with chromium suggested an increase in visible light absorption due to a decrease in the effective band gap. The application potential of the Cr-TiO2 catalyst was studied in the degradation of sugar-based alcohol distillery waste under natural sunlight, and the results were compared with those of undoped TiO2 and Degussa P25 TiO2. Degradation of the spent wash solution was monitored using UV-visible, gel permeation chromatography (GPC), and QTOF LC-MS. GPC and LC-MS showed significant changes in the molecular weight of spent wash colour-forming compounds due to the degradation reaction. QTOF LC-MS analysis suggested that acids, alcohols, glucosides, ketones, lipids, peptides, and metabolites were oxidized to low-molecular-weight counterparts. From the results, 5% Cr-TiO2 showed the highest degradation rate among all Cr-TiO2 samples, undoped TiO2, and Degussa P25 TiO2 under identical reaction conditions, with nearly 68-70% degradation achieved in 5 h.

17.
RSC Adv ; 9(5): 2484-2492, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35520531

RESUMO

In the present study, we demonstrated the use of fragmented lignin in the synthesis of a hierarchical-type structure of ZnO nanorods. Lignin was isolated from bagasse by the microwave assisted method and its fragmentation was achieved in alkaline conditions along with hydrogen peroxide. Lignin and fragmented lignin were purified by crystallisation followed by column chromatography and characterized by UV-visible spectroscopy, Frontier infra-red spectroscopy (FTIR), 1H-NMR and high resolution mass spectroscopy (HRMS). Fragmented lignin was utilized as a template for the synthesis of ZnO nanorods, which were characterized by powder XRD, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-DRS for the determination of crystal structure, particle morphology and band gap. XRD of the ZnO samples revealed a hexagonal wurtzite structure. The morphology of ZnO without fragmented lignin showed agglomerated nanoparticles and with fragmented lignin, a self-assembled hierarchical nanostructure due to nanorods of 30 nm diameter and 200-500 nm length was observed. The fragmented lignin showed a pronounced effect on the particle size and morphology of ZnO nanoparticles. We measured the response of the hierarchical ZnO nanostructure (50 ppm) for sensing NH3 in terms of change in voltage across known resistance. We observed the response and recovery upon introduction of the analyte ammonia gas at 175 °C.

18.
RSC Adv ; 9(18): 10289-10296, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35520940

RESUMO

Herein, a facile hydrothermally-assisted sonochemical approach for the synthesis of a ZnO decorated Sn3O4 nano-heterostructure is reported. The phase purity of the nano-heterostructure was confirmed by X-ray diffraction and Raman spectroscopy. The morphological analysis demonstrated a nanosheet-like structure of Sn3O4 with a thickness of 20 nm, decorated with ZnO. The optical band gap was found to be 2.60 eV for the ZnO@Sn3O4 nano-heterostructure. Photoluminescence studies revealed the suppression of electron-hole recombination in the ZnO@Sn3O4 nano-heterostructure. The potential efficiency of ZnO@Sn3O4 was further evaluated towards photocatalytic hydrogen production via H2O splitting and degradation of methylene blue (MB) dye. Interestingly, it showed significantly superior photocatalytic activity compared to ZnO and Sn3O4. The complete degradation of MB dye solution was achieved within 40 min. The nano-heterostructure also exhibited enhanced photocatalytic activity towards hydrogen evolution (98.2 µmol h-1/0.1 g) via water splitting under natural sunlight. The superior photocatalytic activity of ZnO@Sn3O4 was attributed to vacancy defects created due to its nano-heterostructure.

19.
RSC Adv ; 9(49): 28525-28533, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-35529653

RESUMO

The synthesis of Ag-nanoparticle-decorated CdMoO4 and its photocatalytic activity towards hydrogen generation under sunlight has been demonstrated. The CdMoO4 samples were synthesized by a simple hydrothermal approach in which Ag nanoparticles were in situ decorated on the surface of CdMoO4. A morphological study showed that 5 nm spherical Ag nanoparticles were homogeneously distributed on the surface of CdMoO4 particles. The UV/DRS spectra show that the band gap of CdMoO4 was narrowed by the incorporation of a small amount of Ag nanoparticles. The surface plasmonic effect of Ag shows broad absorption in the visible region. The enhanced photocatalytic hydrogen production activities of all the samples were evaluated by using methanol as a sacrificial reagent in water under natural sunlight conditions. The results suggest that the rate of photocatalytic hydrogen production using CdMoO4 can be significantly improved by loading 2% Ag nanoparticles: i.e. 2465 µmol h-1 g-1 for a 15 mg catalyst. The strong excitation of surface plasmon resonance (SPR) absorption by the Ag nanoparticles was found in the Ag-loaded samples. In this system, the role of Ag nanoparticles on the surface of CdMoO4 has been discussed. In particular, the SPR effect is responsible for higher hydrogen evolution under natural sunlight because of broad absorption in the visible region. The current study could provide new insights for designing metal/semiconductor interface systems to harvest solar light for solar fuel generation.

20.
RSC Adv ; 9(62): 36075-36081, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35540603

RESUMO

Nitrogen enriched carbon nanofibers have been obtained by one-step carbonization/activation of PAN-based nanofibers with various concentrations of melamine at 800 °C under a N2 atmosphere. As synthesised carbon nanofibers were directly used as electrodes for symmetric supercapacitors. The obtained PAN-MEL fibers with 5% melamine stabilised at 280 °C and carbonized at 800 °C under a nitrogen atmosphere showed excellent electrochemical performance with a specific capacitance of up to 166 F g-1 at a current density of 1A g-1 using 6 M KOH electrolyte and a capacity retention of 109.7% after 3000 cycles. It shows a 48% increase as compared to pristine carbon nanofibers. Two electrode systems of the CNFM5 sample showed high energy densities of 23.72 to 12.50 W h kg-1 at power densities from 400 to 30 000 W kg-1. When used as an anode for Li-ion battery application the CNFM5 sample showed a high specific capacity up to 435.47 mA h g-1 at 20 mA g-1, good rate capacity and excellent cycling performance (365 mA h g-1 specific capacity even after 200 cycles at 100 mA g-1). The specific capacity obtained for these nitrogen enriched carbon nanofibers is higher than that for pristine carbon nano-fibers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...