Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Phys Eng Express ; 8(6)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35985177

RESUMO

Bacterial infections have a large impact on public health. Through this study, we report on the development of complementary split-ring resonators (CSRR) supplemented by functionalized nanoparticles to detect bacteria in the aqueous medium. Iron oxide (Fe3O4) nanoparticles were functionalized with amino groups using (3-aminopropyl) triethoxysilane (APTES) to form (APTES@Fe3O4) nanoparticles, which have a specific affinity towards the bacterial species. This affinity was evaluated using theEscherichia coli (E. coli)andStaphylococcus aureus (S. aureus)bacterial species. The resonant sensor was tuned at 430 MHz and the CSRR sensor bed was further activated using APTES@Fe3O4nanoparticles. Bacterial detection was studied over a range of concentrations from 2.66 × 109cells to 2.66 × 108cells. The sensor actively responded to small changes in bacterial concentration, showing an overall shift in resonance frequency of âˆ¼44 MHz (∼40 MHz/cell count) forE. coliand âˆ¼55 MHz (50.43 MHz/cell count) forS. aureus. Dextran sulphate and Chitosan were used as the references. The magnetic character of the conjugated system exhibited strong interaction of the bacterial species with APTES@Fe3O4, justifying the high selectivity towards these species. This demonstrates the feasibility of a sensitive, fast, portable device, against the traditionally used time-consuming bio-assays.


Assuntos
Escherichia coli , Nanopartículas , Bactérias , Staphylococcus aureus
2.
Opt Lett ; 45(16): 4611-4614, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32797022

RESUMO

The electro-optic effect in two-dimensional (2D) MgO nanoflakes synthesized by a microwave-assisted process is demonstrated using a designed optical fiber modulator. The guiding properties of intense core modes excited by the material cavity are modulated by the external electric field. The feasibility of 2D MgO nanoflakes as an effective electro-optic modulator and switching are experimentally verified for the first time, to the best of our knowledge. The proposed optical-fiber-based electro-optic modulator achieves a linear wavelength shift with a high sensitivity of 12.87 pm/V(77.22 nm/kV/mm, in the electric field). The results show that MgO, as a metal oxide 2D material, is a very promising material for electro-optic modulators and switching.

3.
Nanotechnology ; 31(21): 215604, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32018229

RESUMO

Antibiotic resistance is a highly challenging concern of infectious diseases, and it requires a rational approach to overcome. Through this work, we have synthesized ampicillin-capped gold nanoparticles (Amp-Au NPs) and studied its interaction with bacterial cells. In this process of synthesis, the primary amine group of ampicillin acts as both reducing as well as capping agent. In addition to synthesized gold nanoparticles, the ß-lactam ring remains free to interact with bacteria. This approach not only utilizes the maximum efficiency of nanoparticles and antibiotics towards ampicillin sensitive bacterial cells but also proves to be effective against ampicillin resistance bacteria. Our results illustrate that the optimized system of Amp-Au NPs was formulated by taking 1.25 mM ampicillin and 10-2 of gold ions concentration. UV-vis spectrum of gold nanoparticles and the presence of ampicillin were recorded at around 540 nm and 259 nm, respectively. Microscopic images indicate that particles are nearly spherical and are in size range between 25 and 50 nm. Moreover, formulated Amp-Au NPs show successful accumulation onto the surface of the bacterial cell as a result of which pores were formed into the bacterial membrane. The entry of nanoparticles into bacterial cells was validated through both atomic force microscopy and fluorescent microscopy. The adhesive properties of this coating material and its stability in various pH, i.e. pH 3, pH 7 and pH 10 conditions, could make them a good candidate in the prevention of biofilm formation. Amp-Au NPs show promising antimicrobial activity against ampicillin resistance Escherichia coli bacteria. Furthermore, antimicrobial studies indicate that the efficacy of Amp-Au NPs increased against both ampicillin sensitive and ampicillin resistance bacteria up to sixteen folds and four folds respectively.


Assuntos
Resistência a Ampicilina/efeitos dos fármacos , Ampicilina/farmacologia , Escherichia coli/efeitos dos fármacos , Ouro/química , Ampicilina/síntese química , Ampicilina/química , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Microscopia de Fluorescência , Tamanho da Partícula
4.
Analyst ; 143(8): 1890-1898, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29560994

RESUMO

A porous graphene-coated optical fiber Fabry-Perot interferometer (G-FPI) and Fe3O4-graphene nanocomposite coated Fabry-Perot interferometer (FG-FPI) have been investigated and compared for the detection of ammonia gas at room temperature. The sensor probes were subjected to ammonia concentrations varying from 1.5 ppm to 150 ppm. An increased sensitivity was observed for FG-FPI (36 pm ppm-1) when compared with that of G-FPI (25 pm ppm-1). The observed sensor detection limits for FG-FPI and G-FPI were around 7 and 10 ppb, respectively. The sensing mechanism was based on the change in refractive index/dielectric constant of the material; which changed the conductivity of coated material in presence of NH3. It was observed that the modified refractive index induced a wavelength shift in the FPI. The highly porous structure of graphene and the uniform dispersion of Fe3O4 nanoparticles into this framework effectively facilitated the target gas diffusion and hence improved the sensing performance. The sensing was correlated to the oxygen vacancies on the Fe3O4 surfaces and the depletion region manipulations with the ammonia interactions along with Schottky-type electron conductivity via the conducting graphene assembled porous carbon framework. The mathematical evaluation of the phenomenon also justified the excellent repeatability and reversibility of this sensitive, room temperature sensor.

5.
J Colloid Interface Sci ; 514: 534-543, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29289736

RESUMO

We have systematically studied heating efficiencies (via specific absorption rate-SAR/intrinsic loss power-ILP) of carboxyl (terephthalic acid-TA) functionalized hydrophilic SPIONs based ferrofluids (with good biocompatibility/high magnetization) and influence of following key factors in magnetic fluid hyperthermia (MFH): (i) alternating magnetic fields (AMFs - H)/frequencies (f) - chosen below/above Hergt's biological safety limit, (ii) concentrations (0.5-8 mg/ml) and (iii) dispersion media (water, a cell-culture medium and triethylene glycol (TEG)) for in vitro cancer therapy. In calorimetric MFH, aqueous ferrofluids have displayed excellent time-dependent temperature rise for the applied AMFs, which resulted in high SAR ranging from 23.4 to 160.7 W/gFe, attributed to the enhanced magnetic responses via π-conjugations of short-chained TA molecules on the surface of SPIONs. Moreover, ILP values up-to 2.5 nHm2/kg (higher than the best commercial ferrofluids) are attained for the aqueous ferrofluids when excited below the recommended safety limit. Besides, the SPIONs dispersed in high viscous TEG have exhibited the highest SAR value (178.8 W/gFe) and reached therapeutic temperatures at faster rates for the lowest concentration due to prominent Neel relaxations. Moreover, these SPIONs have higher killing efficiency towards MCF-7 cancer cells in in vitro studies. Thus, the TA-based ferrofluids have great potential for in vivo/clinical MFH cancer therapies.

6.
Biosens Bioelectron ; 86: 595-608, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27453988

RESUMO

Potential applications of thin film metamaterials are diverse and their realization to offer miniaturized waveguides, antennas and shielding patterns are on anvil. These artificially engineered structures can produce astonishing electromagnetic responses because of their constituents being engineered at much smaller dimensions than the wavelength of the incident electromagnetic wave, hence behaving as artificial materials. Such micro-nano dimensions of thin film metamaterial structures can be customized for various applications due to their exclusive responses to not only electromagnetic, but also to acoustic and thermal waves that surpass the natural materials' properties. In this paper, the recent major advancements in the emerging fields of diagnostics (sensors) and therapeutics involving thin film metamaterials have been reviewed and underlined; discussing their edge over conventional counterpart techniques; concentrating on their design considerations and feasible ways of achieving them. Challenges faced in sensitivity, precision, accuracy and factors that interfere with the degree of performance of the sensors are also dealt with, herein.


Assuntos
Técnicas Biossensoriais/instrumentação , Monitoramento de Medicamentos/instrumentação , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
J Nanosci Nanotechnol ; 15(6): 4039-45, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26369010

RESUMO

Fine combination of natural botanical extracts to evaluate and maximize their medicinal efficacy has been studied for long. However, their limited shelf-life, complicated extraction protocols, and difficult compositional analysis have always been a problem. It is due to this that such materials take time to convert them into a proper pharmaceutical technology or product. In this context, we report on synthesis of self-assembled template of one of the most popular natural product, aloevera. This forms a fine porous membrane like structure, in which a natural drug, curcumin has been immobilized/trapped. The so-made curcumin-loaded-aloevera (CLA) structures have been carefully evaluated using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), atomic force microscopy (AFM), UV-vis spectroscopy and fluorescence microscopy. While FTIR shows that there is no chemical interaction between aloevera and curcumin, the pores are finely occupied by curcumin molecules. Fine microscopy structures reveal their distribution and fluorescence microscopy confirm the presence of curcumin within the pores. TGA shows 15% loading of the curcumin in the template and UV-visible spectroscopy data shows independent peaks of both, aloevera (196 nm and 256 nm) and curcumin (423 nm), respectively. When subjected to antioxidant studies, using DPPH assays, CLAs show a synergistically superior DPPH radical scavenging activity as compared to only curcumin and only aloevera extract. Same is true for hydroxyl and NO2 radicals. Trans-membrane release study reveals that there is no significant difference in the amount of curcumin release from CLAs till initial 30 min, however, it increases steadily thereafter. CLA is found to facilitate efficient release of curcumin in 5 h, which is higher as compared to the curcumin alone.


Assuntos
Aloe/química , Antioxidantes/química , Curcumina/química , Nanopartículas/química , Extratos Vegetais/química , Antioxidantes/metabolismo , Antioxidantes/farmacocinética , Portadores de Fármacos/química , Membranas Artificiais , Óxido Nítrico/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacocinética , Superóxidos/metabolismo
8.
J Nanosci Nanotechnol ; 15(6): 4046-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26369011

RESUMO

With the advances in nanoscience and nanotechnology the interest of researchers has expanded to interdisciplinary domain like bio-medical applications. Among such domains, one of the most important areas explored meticulously is the development of promising solutions in diabetes therapeutics. The disease associated with metabolic disorder, is one of the major challenges, due to its ever-increasing number of patients. The adverse effects of the synthetic enzymes like α-amylase and α-glucosidase inhibitors have invited many scientists to develop promising contender with minimal side-effects. On the other hand, Zinc has strong role in insulin synthesis, storage and secretion and thus its deficiency can be related to diabetes. In this context we have explored natural extract of Red Sandalwood (RSW) as a potent anti-diabetic agent, in conjugation with ZnO nanoparticles. ZnO nanoparticles have been synthesized via soft chemistry routes and duly characterized for their phase formation with the help of X-ray diffraction technique and Field-Emission Scanning Electron Microscopy. These monodispersed nanoparticles, -20 nm in size, were further conjugated to RSW extract. The conjugation chemistry was studied via Fourier transform infrared spectroscopy, UV-visible spectroscopy. Extract loading percentage was found from thermo-gravimetric analysis. 65% of the RSW extract was found conjugated to the ZnO nanoparticles. The anti-diabetic activity was assessed with the help of like α-amylase and α-glucosidase inhibition assay with murine pancreatic and small intestinal extracts. It was observed that the conjugated ZnO-RSW nanoparticles showed excellent activity against the crude murine pancreatic glucosidase as compared to the individual ZnO nanoparticles and the RSW extract. The ZnO-RSW conjugate showed 61.93% of inhibition while the bare ZnO nanoparticles and RSW showed 21.48% and 5.90% respectively.


Assuntos
Hipoglicemiantes/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Santalum/química , Óxido de Zinco/química , Animais , Glucosidases/antagonistas & inibidores , Glucosidases/efeitos dos fármacos , Glucosidases/metabolismo , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Extratos Vegetais/farmacologia , Suínos , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/efeitos dos fármacos , alfa-Amilases/metabolismo
9.
Phys Chem Chem Phys ; 17(28): 18353-63, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26105548

RESUMO

In this study, a novel composite of Fe3O4 nanofiller-decorated single-layer graphene-assembled porous carbon (SLGAPC) with polyvinyl alcohol (PVA) having flexibility and a density of 0.75 g cm(-3) is explored for its dielectric and electromagnetic interference (EMI) response properties. The composite is prepared by the solution casting method and its constituents are optimized as 15 wt% SLGAPC and 20 wt% Fe3O4 through a novel solvent relaxation nuclear magnetic resonance experiment. The PVA-SLGAPC-Fe3O4 composite shows high dielectric permittivity in the range of 1 Hz-10 MHz, enhanced by a factor of 4 as compared to that of the PVA-SLGAPC composite, with a reduced loss by a factor of 2. The temperature dependent dielectric properties reveal the activation energy behaviour with reference to the glass transition temperature (80 °C) of PVA. The dielectric hysteresis with the temperature cycle reveals a remnant polarization. The enhanced dielectric properties are suggested to be the result of improvement in the localized polarization of the integrated interface system (Maxwell-Wagner-Sillars (MWS) polarization) formed by the uniform adsorption of Fe3O4 on the surface of SLGAPC conjugated with PVA. The EMI shielding property of the composite with a low thickness of 0.3 mm in the X-band (8.2-12.4 GHz) shows a very impressive shielding efficiency of ∼15 dB and a specific shielding effectiveness of 20 dB (g cm(-3))(-1), indicating the promising character of this material for flexible EMI shielding applications.

10.
Opt Lett ; 40(4): 491-4, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25680132

RESUMO

Single crystals of lithium niobate (LiNbO3), possessing high birefringence and anisotropic properties have been explored, for a long time, to harness their excellent electro-optic properties. However, their nanoforms are comparatively less explored. In this context, dielectric constant and polarization (P) versus electric-field (E) characteristics of LiNbO3 nanomaterials have been studied. A nonideal P-E loop and a dielectric constant of 20 at the onset of 1 kHz were seen. The electro-optic sensitivity was found to be 4 times as compared to the bulk LiNbO3 crystals. The results are attributed to oxygen vacancies, antisite defects, and grain boundary effects in an already congruent structural matrix of LiNbO3.

11.
Mater Sci Eng C Mater Biol Appl ; 34: 9-14, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24268227

RESUMO

Release of antimicrobial drugs in a controlled fashion for extended duration of time has been investigated for long. Such controlled-drug-releasing materials show promising applications in medicinal bandages. Along with antimicrobial agents, one could also incorporate other therapeutic drugs, to make such bandages more versatile. In this context, silica micro particles were synthesized using direct reduction method, in which the synthesis was done in the presence of Cephalexin. Cephalexin was chosen as an antimicrobial candidate. The morphological characterization shows formation of monodispersed, silica microparticles of ~200nm in size. The FTIR spectroscopy shows weak interaction of the drug molecule at its hydroxide (OH) site with oxygen ions on the silica surface. Upon conjugation, the UV-vis spectroscopy shows persistence of the Cephalexin signature, especially its R group, confirming its antimicrobial activity even after conjugation. Loading studies reveal 12% Cephalexin loading on silica. The antimicrobial studies were done on three micro-organisms, namely, Staphylococcus aureus, Bacillus subtilis and Escherichia coli. Using zone-of-inhibition studies, it was found that E. coli, did not respond to the delivery of Cephalexin either directly or via microparticles. However, for both S. aureus and B. subtilis, the particles showed controlled release of Cephalexin for the duration of 48h and continued maintenance and even increase in the zone of inhibition. This work demonstrates an effective protocol to prepare antimicrobial patches for controlled drug delivery.


Assuntos
Anti-Infecciosos/farmacologia , Cefalexina/farmacologia , Microesferas , Dióxido de Silício/química , Anti-Infecciosos/química , Bactérias/efeitos dos fármacos , Cefalexina/química , Preparações de Ação Retardada/química , Testes de Sensibilidade Microbiana , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
12.
J Nanosci Nanotechnol ; 11(3): 2730-4, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21449464

RESUMO

In this paper, we report single step synthesis of hydrophilic superparamagnetic magnetite nanoparticles by thermolysis of Fe(acac)3 and their characterization of the properties relevant to biomedical applications like hyperthermia and magnetic resonance imaging (MRI). Size and morphology of the particles were determined by Transmission electron microscopy (TEM) while phase purity and structure of the particles were identified by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Magnetic properties were evaluated using vibrating sample magnetometer (VSM) and superconducting quantum interference device (SQUID) measurements. The as prepared nanoparticles were found to be superparamagnetic with the blocking temperature of 136 K and were easily suspendable in water. Cytotoxicity studies on human cervical (SiHa), mouse melanoma (B16F10) and mouse primary fibroblast cells demonstrated that up to a dose of 0.1 mg/ml, the magnetite nanoparticles were nontoxic to the cells. To evaluate the feasibility of their uses in hyperthermia and MRI applications, specific absorption rate (SAR) and spin-spin relaxation time (T2) were measured respectively. SAR has been calculated to be above 80 Watt/g for samples with the iron concentration of 5-20 mg/ml at 10 kA/m AC magnetic field and 425 kHz frequency. r2 relaxivity value was measured as 358.4 mM(-1)S(-1) which is almost double as compared to that of the Resovist, a commercially available MRI contrast agent. Thus the as-prepared magnetite nanoparticles may be used for hyperthermia and MRI applications due to their promising SAR and r2 values.


Assuntos
Cristalização/métodos , Magnetismo , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanotecnologia/métodos , Propriedades de Superfície
13.
Phys Rev Lett ; 91(7): 077205, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12935053

RESUMO

The occurrence of room temperature ferromagnetism is demonstrated in pulsed laser deposited thin films of Sn(1-x)Co(x)O(2-delta) (x<0.3). Interestingly, films of Sn(0.95)Co(0.05)O(2-delta) grown on R-plane sapphire not only exhibit ferromagnetism with a Curie temperature close to 650 K, but also a giant magnetic moment of 7.5+/-0.5 micro(B)/Co, not yet reported in any diluted magnetic semiconductor system. The films are semiconducting and optically highly transparent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...