Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 46(15): 3504-3507, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329210

RESUMO

This Letter, to the best of our knowledge, reports mid-infrared fiber lasing beyond 5 µm at room temperature for the first time, Ce3+-doped, chalcogenide glass, step index fiber employed in-band pumping with a 4.15 µm quantum cascade laser. The lasing fiber is was 64 mm long, with a calculated numerical aperture of 0.48 at the lasing wavelengths. The core glass was Ge15As21Ga1Se63 atomic % (at. %), doped with 500 parts-per-million-by-weight Ce, with a 9 µm core diameter. The cladding glass was Ge21Sb10Se69 at. % with a 190 µm outer diameter. As pump power increases continuous wave lasing corresponding to the 2F7/2→2F5/2, transition in the Ce3+ ion occurs at 5.14 µm, 5.17 µm, and 5.28 µm.

2.
Sci Rep ; 8(1): 6988, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725079

RESUMO

The fabrication, by an all electrochemical process, of porous Si/ZnO nanostructures with engineered structural defects, leading to strong and broadband deep level emission from ZnO, is presented. Such nanostructures are fabricated by a combination of metal-assisted chemical etching of Si and direct current electrodeposition of ZnO. It makes the whole fabrication process low-cost, compatible with Complementary Metal-Oxide Semiconductor technology, scalable and easily industrialised. The photoluminescence spectra of the porous Si/ZnO nanostructures reveal a correlation between the lineshape, as well as the strength of the emission, with the morphology of the underlying porous Si, that control the induced defects in the ZnO. Appropriate fabrication conditions of the porous Si lead to exceptionally bright Gaussian-type emission that covers almost the entire visible spectrum, indicating that porous Si/ZnO nanostructures could be a cornerstone material towards white-light-emitting devices.

3.
Nanotechnology ; 26(20): 205603, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25918264

RESUMO

Perhaps the simplest method for creating metal nanoparticles on a substrate is by driving their self-assembly with the thermal annealing of a thin metal film. By properly tuning the annealing parameters one hopes to discover a recipe that allows the pre-determined design of the NP arrangement. However, thermal treatment is known for detrimental effects and is not really the manufacturer's route of choice when it comes to large-scale applications. An alternative method is the use of microwave annealing, a method that has never been applied for metal processing, due to the high reflectance of microwave radiation at the surface of a metal. However, in this work we challenge the widely used nanostructuring methods by proving the microwave's annealing ability to produce plasmonic templates, out of extremely thin metal films, by simply using a domestic microwave oven apparatus. We show that this process is generic and independent of the deposition method used for the metal and we further quantify the suitability of these plasmonic templates for use in surface-enhanced Raman scattering applications.

4.
Nanotechnology ; 26(15): 155301, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25800030

RESUMO

Laser nanostructuring of pure ultrathin metal layers or ceramic/metal composite thin films has emerged as a promising route for the fabrication of plasmonic patterns with applications in information storage, cryptography, and security tagging. However, the environmental sensitivity of pure Ag layers and the complexity of ceramic/metal composite film growth hinder the implementation of this technology to large-scale production, as well as its combination with flexible substrates. In the present work we investigate an alternative pathway, namely, starting from non-plasmonic multilayer metal/dielectric layers, whose growth is compatible with large scale production such as in-line sputtering and roll-to-roll deposition, which are then transformed into plasmonic templates by single-shot UV-laser annealing (LA). This entirely cold, large-scale process leads to a subsurface nanoconstruction involving plasmonic Ag nanoparticles (NPs) embedded in a hard and inert dielectric matrix on top of both rigid and flexible substrates. The subsurface encapsulation of Ag NPs provides durability and long-term stability, while the cold character of LA suits the use of sensitive flexible substrates. The morphology of the final composite film depends primarily on the nanocrystalline character of the dielectric host and its thermal conductivity. We demonstrate the emergence of a localized surface plasmon resonance, and its tunability depending on the applied fluence and environmental pressure. The results are well explained by theoretical photothermal modeling. Overall, our findings qualify the proposed process as an excellent candidate for versatile, large-scale optical encoding applications.

5.
Phys Rev Lett ; 99(12): 125503, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17930516

RESUMO

Transition-metal nitrides (TMN) have exceptional stability, which underlies their use in various applications. Here, we study the role of N point defects on the stability of prototype TMNs using first-principles calculations. We find that distinct regimes for TMN changes relate to specific atomic-scale mechanisms, namely, diffusion of N interstitials (I(N)), of I(N) pairs, and of N vacancies. The activation of these processes occurs sequentially as the temperature is raised in a range of several hundreds of degrees, accounting for observed TMN changes under widely different conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...