Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208083

RESUMO

The paper presents results of research on the impact of fly ash from fluidized bed combustion (FBC) of lignite, used in quantities of 30 and 45% by mass, and the mixture of FBC and silicious fly ash in amount of 45% by mass, on properties of cement-ash mortars. Mortars were exposed to aggressive environment of 1, 3, and 5% HCl solutions for 2 years. Mortars containing 45% FBC exposed to 1% HCl solution (pH = 2) showed the highest durability from among other mortars. The growth of their strength observed after 90 days of testing in 1% HCl environment, as well as the lowest drop of strength after 730 days of exposure to this environment, resulted from the reduced amount of large pores from 20 to 200 nm in mortars containing fly ash, with simultaneous growth of smaller pores of <20 nm during testing. A beneficial effect has been demonstrated of FBC addition to cement on properties of cement-ash mortars exposed to the aggressive impact of the HCl. Mortars with FBC fly-ash content increased to 45% by mass showed higher strength values, smaller differences in linear and mass changes, and increased durability in an aggressive environment observed during 730 days of testing.

2.
Materials (Basel) ; 14(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946433

RESUMO

This article presents test results of aggressive environment impact, i.e., seawater, acid solutions and carbonation, on the durability of cement-ash mortars. Tests were conducted on CEM I 42.5R-based mortars containing 35 to 70% by mass of FBC fly ash from brown and black coal combustion in a homogeneous form and mixtures of 35% by mass of siliceous fly ashes (CFA) and 35% by mass of FBC fly ash. It was demonstrated that in normal conditions (20 °C), FBC ashes showed higher pozzolanic activity than CFA, except when their curing temperature was increased to 50 °C. FBC ashes increased mortars' water demands, which led to an accelerated carbonation process. In an environment of Cl- ions, cement-ash mortars showed more Ca2+ ions leached and no expansive linear and mass changes, which, with their increased strength, might be an argument in favour for their future use in construction of coastal structures resistant to seawater. FBC ash content may be increased to 35% by mass, maintaining mortars' resistance to seawater, acid rain and carbonation. A favourable solution turned out to be a FBC and CFA mixed addition to cement of 35% by mass each, in contrast to mortars containing 70% of FBC fly ash in homogeneous form.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...