Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 14(9): 2058-2068, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32255264

RESUMO

In patients with triple-negative breast cancer (TNBC), evidence suggests that tumor-initiating cells (TIC) have stem cell-like properties, leading to invasion and metastasis. HSP90 plays a critical role in the conformational maintenance of many client proteins in TIC development. Therefore, we hypothesize that the novel C-terminal HSP90 inhibitors KU711 and KU758 can target TIC and represent a promising strategy for overcoming metastasis. Human breast cancer cells (MDA-MB-468LN, MDA-MB-231) treated with the HSP90 inhibitors KU711, KU758, and 17-AAG showed a 50-80% decrease in TIC markers CD44 and aldehyde dehydrogenase (P < 0.01) as assessed by flow cytometry. A decrease in sphere formation, which was used to assess self-renewal, was observed after the treatment of TNBC cells starting at 2.5 µm KU711 and 0.31 µm KU758. KU compounds also blocked the invasion and migration of TNBC cells in a dose-dependent manner. The knockdown of HSP90 clients was observed without any change in prosurvival HSP70 levels. In vivo, in a murine orthotopic breast cancer model, treatment with KU758 and KU711 yielded an approximately twofold and a fourfold reduction in tumor volumes versus control, respectively, without demonstrated toxicity. In conclusion, C-terminal HSP90 inhibitors are potent novel therapeutics against TNBC in vitro and in vivo as they target TICs and block invasion, EMT transition, and self-renewal.


Assuntos
Movimento Celular , Autorrenovação Celular , Transição Epitelial-Mesenquimal , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Células-Tronco Neoplásicas/patologia , Aldeído Desidrogenase/metabolismo , Animais , Benzoquinonas/farmacologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Feminino , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/metabolismo , Lactamas Macrocíclicas/farmacologia , Camundongos Nus , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Neoplasias de Mama Triplo Negativas/patologia
2.
Surgery ; 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29753460

RESUMO

BACKGROUND: Pathways critical for neuroblastoma cancer stem cell function are targeted by 4,19,27-triacetyl withalongolide A (WGA-TA). Because neuroblastoma cells and their cancer stem cells highly overexpress the scavenger receptor class B type 1 receptor that binds to synthetic high-density lipoprotein, we hypothesized that a novel mimetic synthetic high-density lipoprotein nanoparticle would be an ideal carrier for the delivery of 4,19,27-triacetyl withalongolide to neuroblastoma and neuroblastoma cancer stem cells. METHODS: Expression of scavenger receptor class B type 1 in validated human neuroblastoma cells was evaluated by quantitative polymerase chain reaction (qPCR) and Western blot. In vitro cellular uptake of synthetic high-density lipoprotein nanoparticles was observed with a fluorescence microscope. In vivo biodistribution of synthetic high-density lipoprotein nanoparticles was investigated with IVIS imaging. Self-renewal and migration/invasion were assessed by sphere formation and Boyden chamber assays, respectively. Viability was analyzed by CellTiter-Glo assay. Cancer stem cell markers were evaluated by flow cytometry. RESULTS: qPCR and Western blot analysis revealed a higher level of scavenger receptor class B type 1 expression and drug uptake in N-myc amplified neuroblastoma cells. In vitro uptake of synthetic high-density lipoprotein was almost completely blocked by excess synthetic high-density lipoprotein. The synthetic high-density lipoprotein nanoparticles mainly accumulated in the tumor and liver, but not in other organs. Synthetic HDL-4,19,27-triacetyl withalongolide showed a 1,000-fold higher potency than the carrier (synthetic high-density lipoprotein) alone (P < .01) to kill neuroblastoma cells. Additionally, a dose-dependent decrease in sphere formation, invasion, migration, and cancer stem cell markers was observed after treatment of neuroblastoma cells with synthetic high-density lipoprotein-4,19,27-triacetyl withalongolide A. CONCLUSION: Synthetic high-density lipoprotein is a promising platform to improve the delivery of anticancer drug 4,19,27-triacetyl withalongolide A to neuroblastomas and neuroblastoma cancer stem cells through SR-B1 targeting in vitro and in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...