Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 31(4): 717-726, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38337033

RESUMO

Rapid signaling between neurons is mediated by ligand-gated ion channels, cell-surface proteins with an extracellular ligand-binding domain and a membrane-spanning ion channel domain. The degenerin/epithelial sodium channel (DEG/ENaC) superfamily is diverse in terms of its gating stimuli, with some DEG/ENaCs gated by neuropeptides, and others gated by pH, mechanical force or enzymatic activity. The mechanism by which ligands bind to and activate DEG/ENaCs is poorly understood. Here we dissected the structural basis for neuropeptide-gated activity of a neuropeptide-gated DEG/ENaC, FMRFamide-gated sodium channel 1 (FaNaC1) from the annelid worm Malacoceros fuliginosus, using cryo-electron microscopy. Structures of FaNaC1 in the ligand-free resting state and in several ligand-bound states reveal the ligand-binding site and capture the ligand-induced conformational changes of channel gating, which we verified with complementary mutagenesis experiments. Our results illuminate channel gating in DEG/ENaCs and offer a structural template for experimental dissection of channel pharmacology and ion conduction.


Assuntos
Ativação do Canal Iônico , Neuropeptídeos , Ativação do Canal Iônico/fisiologia , Microscopia Crioeletrônica , Ligantes , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/metabolismo , Neuropeptídeos/metabolismo
2.
Nature ; 623(7985): 202-209, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37880361

RESUMO

The newly characterized sperm-specific Na+/H+ exchanger stands out by its unique tripartite domain composition1,2. It unites a classical solute carrier unit with regulatory domains usually found in ion channels, namely, a voltage-sensing domain and a cyclic-nucleotide binding domain1,3, which makes it a mechanistic chimera and a secondary-active transporter activated strictly by membrane voltage. Our structures of the sea urchin SpSLC9C1 in the absence and presence of ligands reveal the overall domain arrangement and new structural coupling elements. They allow us to propose a gating model, where movements in the voltage sensor indirectly cause the release of the exchanging unit from a locked state through long-distance allosteric effects transmitted by the newly characterized coupling helices. We further propose that modulation by its ligand cyclic AMP occurs by means of disruption of the cytosolic dimer interface, which lowers the energy barrier for S4 movements in the voltage-sensing domain. As SLC9C1 members have been shown to be essential for male fertility, including in mammals2,4,5, our structure represents a potential new platform for the development of new on-demand contraceptives.


Assuntos
AMP Cíclico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico , Ouriços-do-Mar , Espermatozoides , Animais , Masculino , Regulação Alostérica , AMP Cíclico/metabolismo , Fertilidade , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ligantes , Domínios Proteicos , Multimerização Proteica , Ouriços-do-Mar/química , Ouriços-do-Mar/metabolismo , Espermatozoides/química , Espermatozoides/metabolismo , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo
3.
Elife ; 102021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34583807

RESUMO

The 3D structures of a membrane protein called TMEM120A suggest that it may act as an enzyme in fat metabolism rather than as an ion channel that senses mechanical pain.


Assuntos
Proteínas de Membrana , Dor , Microscopia Crioeletrônica , Humanos
4.
J Mol Biol ; 433(16): 166941, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-33741412

RESUMO

The TMEM16 family of membrane proteins displays a remarkable functional dichotomy - while some family members function as Ca2+-activated anion channels, the majority of characterized TMEM16 homologs are Ca2+-activated lipid scramblases, which catalyze the exchange of phospholipids between the two membrane leaflets. Furthermore, some TMEM16 scramblases can also function as channels. Due to their involvement in important physiological processes, the family has been actively studied ever since their molecular identity was unraveled. In this review, we will summarize the recent advances in the field and how they influenced our view of TMEM16 family function and evolution. Structural, functional and computational studies reveal how relatively small rearrangements in the permeation pathway are responsible for the observed functional duality: while TMEM16 scramblases can adopt both ion- and lipid conductive conformations, TMEM16 channels can only populate the former. Recent data further provides the molecular details of a stepwise activation mechanism, which is initiated by Ca2+ binding and modulated by various cellular factors, including lipids. TMEM16 function and the surrounding membrane properties are inextricably intertwined, with the protein inducing bilayer deformations associated with scrambling, while the surrounding lipids modulate TMEM16 conformation and activity.


Assuntos
Anoctaminas/química , Anoctaminas/metabolismo , Animais , Cálcio/metabolismo , Humanos , Transporte de Íons , Metabolismo dos Lipídeos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade
5.
Methods Mol Biol ; 2127: 245-273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32112327

RESUMO

Single-particle cryo-electron microscopy has become an indispensable technique in structural biology. In particular when studying membrane proteins, it allows the use of membrane-mimicking tools, which can be crucial for a comprehensive understanding of the structure-function relationship of the protein in its native environment. In this chapter we focus on the application of nanodiscs and use our recent studies on the TMEM16 family as an example.


Assuntos
Microscopia Crioeletrônica/métodos , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Imagem Individual de Molécula/métodos , Animais , Anoctaminas/química , Anoctaminas/metabolismo , Coleta de Dados/métodos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fusarium , Humanos , Processamento de Imagem Assistida por Computador/métodos , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Nanoestruturas/química , Conformação Proteica
6.
Elife ; 82019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30785398

RESUMO

Scramblases catalyze the movement of lipids between both leaflets of a bilayer. Whereas the X-ray structure of the protein nhTMEM16 has previously revealed the architecture of a Ca2+-dependent lipid scramblase, its regulation mechanism has remained elusive. Here, we have used cryo-electron microscopy and functional assays to address this question. Ca2+-bound and Ca2+-free conformations of nhTMEM16 in detergent and lipid nanodiscs illustrate the interactions with its environment and they reveal the conformational changes underlying its activation. In this process, Ca2+ binding induces a stepwise transition of the catalytic subunit cavity, converting a closed cavity that is shielded from the membrane in the absence of ligand, into a polar furrow that becomes accessible to lipid headgroups in the Ca2+-bound state. Additionally, our structures demonstrate how nhTMEM16 distorts the membrane at both entrances of the subunit cavity, thereby decreasing the energy barrier for lipid movement.


Assuntos
Anoctaminas/metabolismo , Microscopia Crioeletrônica/métodos , Sequência de Aminoácidos , Anoctaminas/ultraestrutura , Cristalografia por Raios X , Ligantes , Conformação Proteica , Homologia de Sequência de Aminoácidos
7.
Nature ; 552(7685): 421-425, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29236691

RESUMO

The calcium-activated chloride channel TMEM16A is a ligand-gated anion channel that opens in response to an increase in intracellular Ca2+ concentration. The protein is broadly expressed and contributes to diverse physiological processes, including transepithelial chloride transport and the control of electrical signalling in smooth muscles and certain neurons. As a member of the TMEM16 (or anoctamin) family of membrane proteins, TMEM16A is closely related to paralogues that function as scramblases, which facilitate the bidirectional movement of lipids across membranes. The unusual functional diversity of the TMEM16 family and the relationship between two seemingly incompatible transport mechanisms has been the focus of recent investigations. Previous breakthroughs were obtained from the X-ray structure of the lipid scramblase of the fungus Nectria haematococca (nhTMEM16), and from the cryo-electron microscopy structure of mouse TMEM16A at 6.6 Å (ref. 14). Although the latter structure disclosed the architectural differences that distinguish ion channels from lipid scramblases, its low resolution did not permit a detailed molecular description of the protein or provide any insight into its activation by Ca2+. Here we describe the structures of mouse TMEM16A at high resolution in the presence and absence of Ca2+. These structures reveal the differences between ligand-bound and ligand-free states of a calcium-activated chloride channel, and when combined with functional experiments suggest a mechanism for gating. During activation, the binding of Ca2+ to a site located within the transmembrane domain, in the vicinity of the pore, alters the electrostatic properties of the ion conduction path and triggers a conformational rearrangement of an α-helix that comes into physical contact with the bound ligand, and thereby directly couples ligand binding and pore opening. Our study describes a process that is unique among channel proteins, but one that is presumably general for both functional branches of the TMEM16 family.


Assuntos
Anoctamina-1/química , Anoctamina-1/ultraestrutura , Cálcio/química , Cálcio/farmacologia , Microscopia Crioeletrônica , Ativação do Canal Iônico/efeitos dos fármacos , Animais , Anoctamina-1/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Membrana Celular/metabolismo , Glicina/metabolismo , Transporte de Íons/efeitos dos fármacos , Ligantes , Camundongos , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Eletricidade Estática
8.
Elife ; 62017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561733

RESUMO

The calcium-activated chloride channel TMEM16A is a member of a conserved protein family that comprises ion channels and lipid scramblases. Although the structure of the scramblase nhTMEM16 has defined the architecture of the family, it was unknown how a channel has adapted to cope with its distinct functional properties. Here we have addressed this question by the structure determination of mouse TMEM16A by cryo-electron microscopy and a complementary functional characterization. The protein shows a similar organization to nhTMEM16, except for changes at the site of catalysis. There, the conformation of transmembrane helices constituting a membrane-spanning furrow that provides a path for lipids in scramblases has changed to form an enclosed aqueous pore that is largely shielded from the membrane. Our study thus reveals the structural basis of anion conduction in a TMEM16 channel and it defines the foundation for the diverse functional behavior in the TMEM16 family.


Assuntos
Ânions/metabolismo , Anoctamina-1/metabolismo , Anoctamina-1/ultraestrutura , Animais , Microscopia Crioeletrônica , Camundongos , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA