Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Sci Adv ; 9(9): eadf0797, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867692

RESUMO

During cotranslational translocation, the signal peptide of a nascent chain binds Sec61 translocon to initiate protein transport through the endoplasmic reticulum (ER) membrane. Our cryo-electron microscopy structure of ribosome-Sec61 shows binding of an ordered heterotetrameric translocon-associated protein (TRAP) complex, in which TRAP-γ is anchored at two adjacent positions of 28S ribosomal RNA and interacts with ribosomal protein L38 and Sec61α/γ. Four transmembrane helices (TMHs) of TRAP-γ cluster with one C-terminal helix of each α, ß, and δ subunits. The seven TMH bundle helps position a crescent-shaped trimeric TRAP-α/ß/δ core in the ER lumen, facing the Sec61 channel. Further, our in vitro assay establishes the cyclotriazadisulfonamide derivative CK147 as a translocon inhibitor. A structure of ribosome-Sec61-CK147 reveals CK147 binding the channel and interacting with the plug helix from the lumenal side. The CK147 resistance mutations surround the inhibitor. These structures help in understanding the TRAP functions and provide a new Sec61 site for designing translocon inhibitors.


Assuntos
Proteínas de Ligação ao Cálcio , Ribossomos , Canais de Translocação SEC , Microscopia Crioeletrônica
2.
Traffic ; 21(2): 250-264, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31675144

RESUMO

Cyclotriazadisulfonamide (CADA) inhibits the co-translational translocation of human CD4 (huCD4) into the endoplasmic reticulum lumen in a signal peptide (SP)-dependent way. We propose that CADA binds the nascent huCD4 SP in a folded conformation within the translocon resembling a normally transitory state during translocation. Here, we used alanine scanning on the huCD4 SP to identify the signature for full susceptibility to CADA. In accordance with our previous work, we demonstrate that residues in the vicinity of the hydrophobic h-region are critical for sensitivity to CADA. In particular, exchanging Gln-15, Val-17 or Pro-20 in the huCD4 SP for Ala resulted in a resistant phenotype. Together with positively charged residues at the N-terminal portion of the mature protein, these residues mediate full susceptibility to the co-translational translocation inhibitory activity of CADA towards huCD4. In addition, sensitivity to CADA is inversely related to hydrophobicity in the huCD4 SP. In vitro translocation experiments confirmed that the general hydrophobicity of the h-domain and positive charges in the mature protein are key elements that affect both the translocation efficiency of huCD4 and the sensitivity towards CADA. Besides these two general SP parameters that determine the functionality of the signal sequence, unique amino acid pairs (L14/Q15 and L19/P20) in the SP hydrophobic core add specificity to the sensitivity signature for a co-translational translocation inhibitor.


Assuntos
Antígenos CD4 , Sinais Direcionadores de Proteínas , Inibidores da Síntese de Proteínas , Antígenos CD4/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Sinais Direcionadores de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia
3.
Exp Dermatol ; 26(12): 1199-1206, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28940860

RESUMO

Previous reports have demonstrated that cell-derived nanoparticles (CDNPs) composed of bovine or porcine protein complexes exerted therapeutic effects against viral infections and cancer in mice and humans. Based on these observations, we asked whether CDNPs would improve inflammatory skin disorders. To address this, we utilized two distinct mouse models of cutaneous inflammation: the autoimmune skin-blistering disease epidermolysis bullosa acquisita (EBA) as an example of an autoantibody-induced cutaneous inflammation, and Leishmania major (L. major) infection as an example of a pathogen-induced cutaneous inflammation. In both models, we observed that CDNPs increased mRNA expression of the Th2 cytokine IL-4. Clinically, CDNPs decreased inflammation due to EBA and increased L. major-specific IgG1 levels without major effects on infected skin lesions. In addition, CDNPs supported the growth of keratinocytes in human skin cultures. In vitro studies revealed that CDNPs were taken up predominantly by macrophages, leading to a shift towards the expression of anti-inflammatory cytokine genes. Altogether, our data demonstrate that treatment with porcine CDNPs may be a new therapeutic option for the control of autoimmune-mediated inflammatory skin disorders.


Assuntos
Micropartículas Derivadas de Células/transplante , Epidermólise Bolhosa Adquirida/terapia , Leishmaniose Cutânea/terapia , Reepitelização , Células Th2/fisiologia , Adulto , Animais , Diferenciação Celular , Epidermólise Bolhosa Adquirida/imunologia , Feminino , Humanos , Interleucina-4/metabolismo , Leishmania major , Leishmaniose Cutânea/imunologia , Linfonodos/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Suínos , Adulto Jovem
4.
Shock ; 48(3): 346-354, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28230708

RESUMO

Cell-derived nanoparticles (CDNPs) containing cytosolic proteins and RNAs/DNAs can be isolated from stressed eukaryotic cells. Previously, CDNPs isolated from cultured cells exerted immunomodulatory activities in different infections. Here, we sought to elucidate the role of CDNPs using a murine model of cecal ligation and puncture (CLP). We hypothesized that CDNPs influence the immune response at the site of infection, where severe cellular stress occurs. We observed early CDNP accumulation in the peritoneum after 4 h and continued CDNP presence 24 h after CLP. To determine whether CDNPs influence the host response to sepsis, we isolated CDNPs from a murine fibroblast cell line stressed by nutrient-deprivation, and injected them into septic mice. CDNP-treated mice demonstrated decreased peritoneal interleukin 6 levels and an approximately 2-log lower bacterial load compared with control mice 24 h after CLP. Additionally, a 20% CFU reduction was observed when incubating CDNPs with Pseudomona aeroginosa, indicating that CDNPs are bactericidal. To identify CDNP-responsive cells, CFSE-labeled CDNPs were injected into mice at the time of CLP. We observed that CDNPs were preferentially ingested by F4/80 macrophages, and to a lesser degree, associated with inflammatory monocytes and neutrophils. Strikingly, CDNP-ingesting cells demonstrated elevated CD11b and MHCII expression compared with control cells. Altogether, our data indicate that CDNPs enhance the immune response at the site of infection and promote bacterial clearance, by direct bacterial killing and increasing phagocyte activation. Thus, CDNPs represent a novel, unexplored endogenous sepsis modulator with therapeutic potential.


Assuntos
Micropartículas Derivadas de Células/transplante , Nanopartículas , Sepse/terapia , Animais , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patologia , Modelos Animais de Doenças , Masculino , Camundongos , Peritônio/metabolismo , Peritônio/patologia , Sepse/metabolismo , Sepse/patologia
5.
Mol Biol Cell ; 26(21): 3719-27, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26337389

RESUMO

The initial folding of secreted proteins occurs in the ER lumen, which contains specific chaperones and where posttranslational modifications may occur. Therefore lack of translocation, regardless of entry route or protein identity, is a highly toxic event, as the newly synthesized polypeptide is misfolded and can promiscuously interact with cytosolic factors. Mislocalized proteins bearing a signal sequence that did not successfully translocate through the translocon complex are subjected to a preemptive quality control (pQC) pathway and are degraded by the ubiquitin-proteasome system (UPS). In contrast to UPS-mediated, ER-associated degradation, few components involved in pQC have been identified. Here we demonstrate that on specific translocation inhibition, a p97-AIRAPL complex directly binds and regulates the efficient processing of polyubiquitinated pQC substrates by the UPS. We also demonstrate p97's role in pQC processing of preproinsulin in cases of naturally occurring mutations within the signal sequence of insulin.


Assuntos
Proteínas de Transporte/metabolismo , Degradação Associada com o Retículo Endoplasmático/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , beta Carioferinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Sinais Direcionadores de Proteínas , Ubiquitina/metabolismo , Ubiquitinação
6.
Traffic ; 16(10): 1027-38, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26122014

RESUMO

Protein translocation into the endoplasmic reticulum (ER) constitutes the first step of protein secretion. ER protein import is essential in all eukaryotic cells and is particularly critical in fast-growing tumour cells. Thus, the process can serve as target both for potential cancer drugs and for bacterial virulence factors. Inhibitors of protein transport across the ER membrane range from broad-spectrum to highly substrate-specific and can interfere with virtually any stage of this multistep process, and even with transport of endocytosed antigens into the cytosol for cross-presentation.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Animais , Citosol/efeitos dos fármacos , Citosol/metabolismo , Humanos
7.
Anal Biochem ; 484: 102-4, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26050631

RESUMO

Here, we demonstrate that pancreatic microsomal membranes from pigs, sheep, or cattle destined for human consumption can be used as a valuable and ethically correct alternative to dog microsomes for cell-free protein translocation. By adding adequate ribonuclease (RNase) inhibitors to the membrane fraction, successful in vitro co-translational translocation of wild-type and chimeric pre-prolactin into the lumen of rough microsomes was obtained. In addition, the human type I integral membrane proteins CD4 and VCAM-1 were efficiently glycosylated in RNase-treated microsomes. Thus, RNase-neutralized pancreatic membrane fractions from pig, cow, or sheep are a cheap, easily accessible, and fulfilling alternative to canine microsomes.


Assuntos
Inibidores Enzimáticos/farmacologia , Membranas Intracelulares/metabolismo , Pâncreas/citologia , Ribonucleases/antagonistas & inibidores , Ovinos , Suínos , Animais , Bovinos , Cães , Glicosilação/efeitos dos fármacos , Humanos , Membranas Intracelulares/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos
8.
PLoS Biol ; 12(12): e1002011, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25460167

RESUMO

In eukaryotic cells, surface expression of most type I transmembrane proteins requires translation and simultaneous insertion of the precursor protein into the endoplasmic reticulum (ER) membrane for subsequent routing to the cell surface. This co-translational translocation pathway is initiated when a hydrophobic N-terminal signal peptide (SP) on the nascent protein emerges from the ribosome, binds the cytosolic signal recognition particle (SRP), and targets the ribosome-nascent chain complex to the Sec61 translocon, a universally conserved protein-conducting channel in the ER-membrane. Despite their common function in Sec61 targeting and ER translocation, SPs have diverse but unique primary sequences. Thus, drugs that recognise SPs could be exploited to inhibit translocation of specific proteins into the ER. Here, through flow cytometric analysis the small-molecule macrocycle cyclotriazadisulfonamide (CADA) is identified as a highly selective human CD4 (hCD4) down-modulator. We show that CADA inhibits CD4 biogenesis and that this is due to its ability to inhibit co-translational translocation of CD4 into the lumen of the ER, both in cells as in a cell-free in vitro translation/translocation system. The activity of CADA maps to the cleavable N-terminal SP of hCD4. Moreover, through surface plasmon resonance analysis we were able to show direct binding of CADA to the SP of hCD4 and identify this SP as the target of our drug. Furthermore, CADA locks the SP in the translocon during a post-targeting step, possibly in a folded state, and prevents the translocation of the associated protein into the ER lumen. Instead, the precursor protein is routed to the cytosol for degradation. These findings demonstrate that a synthetic, cell-permeable small-molecule can be developed as a SP-binding drug to selectively inhibit protein translocation and to reversibly regulate the expression of specific target proteins.


Assuntos
Biossíntese de Proteínas/efeitos dos fármacos , Sinais Direcionadores de Proteínas , Inibidores da Síntese de Proteínas/farmacologia , Sequência de Aminoácidos , Antígenos CD4/química , Antígenos CD4/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Conformação Proteica , Transporte Proteico/efeitos dos fármacos , Sulfonamidas/química , Sulfonamidas/farmacologia
9.
BMC Cell Biol ; 14: 56, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24314051

RESUMO

BACKGROUND: The Sec61 channel mediates protein translocation across the endoplasmic reticulum (ER) membrane during secretory protein biogenesis, and likely also during export of misfolded proteins for ER-associated degradation (ERAD). The mechanisms of channel opening for the different modes of translocation are not understood so far, but the position of the large ER-lumenal loop 7 of Sec61p suggests a decisive role. RESULTS: We show here that the Y345H mutation in L7 which causes diabetes in the mouse displays no ER import defects in yeast, but a delay in misfolded protein export. A complete deletion of L7 in Sec61p resulted in viable, cold- and tunicamycin-hypersensitive yeast cells with strong defects in posttranslational protein import of soluble proteins into the ER, and in ERAD of soluble substrates. Membrane protein ERAD was only moderately slower in sec61∆L7 than in wildtype cells. Although Sec61∆L7 channels were unstable in detergent, co-translational protein integration into the ER membrane, proteasome binding to Sec61∆L7 channels, and formation of hetero-heptameric Sec complexes were not affected. CONCLUSIONS: We conclude that L7 of Sec61p is required for initiation of posttranslational soluble protein import into and misfolded soluble protein export from the ER, suggesting a key role for L7 in transverse gating of the Sec61 channel.


Assuntos
Degradação Associada com o Retículo Endoplasmático/genética , Proteínas de Membrana Transportadoras/química , Mutação , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Animais , Retículo Endoplasmático/metabolismo , Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Canais de Translocação SEC , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia Estrutural de Proteína
10.
Biochim Biophys Acta ; 1833(12): 3104-3111, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24013069

RESUMO

Membrane protein insertion and topogenesis generally occur at the Sec61 translocon in the endoplasmic reticulum membrane. During this process, membrane spanning segments may adopt two distinct orientations with either their N- or C-terminus translocated into the ER lumen. While different topogenic determinants in membrane proteins, such as flanking charges, polypeptide folding, and hydrophobicity, have been identified, it is not well understood how the translocon and/or associated components decode them. Here we present evidence that the translocon-associated protein (TRAP) complex is involved in membrane protein topogenesis in vivo. Small interfering RNA (siRNA)-mediated silencing of the TRAP complex in HeLa cells enhanced the topology effect of mutating the flanking charges of a signal-anchor, but not of increasing signal hydrophobicity. The results suggest a role of the TRAP complex in moderating the 'positive-inside' rule.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Mamíferos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Técnicas de Silenciamento de Genes , Inativação Gênica , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Transporte Proteico
11.
Traffic ; 14(3): 274-81, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23217120

RESUMO

Ribosomes tightly interact with protein-conducting channels in the plasma membrane of bacteria (SecYEG) and in the endoplasmic reticulum of eukaryotes (Sec61 complex). This interaction is mediated by multiple junctions and is highly conserved during evolution. Although it is well known that both ribosomal proteins and ribosomal RNA (rRNA) are involved in the ribosome-channel interaction, detailed analyses on how these components contribute to this binding are lacking. Here, we demonstrate that the evolutionary conservation of ribosome binding is solely mediated by rRNA. Moreover, we show that in vitro transcribed 23 S rRNA binds with similar characteristics to protein translocation channels as native 23 S rRNA or 50 S ribosomal subunits. This indicates that base modifications, which exist in native rRNA, do not crucially influence the binding. In two of the ribosome-channel junctions (c1 and c2), exclusively rRNA helices are involved. Using in vitro transcribed rRNA mutants, we now provide evidence that large parts of the rRNA can be deleted without altering its binding properties, as long as the rRNA helices of the c1 and c2 junctions remain intact. We demonstrate that the connection sites c1 and c2 generate high-affinity binding sites that act independently of each other. This could explain why membrane-bound ribosomes have an extremely low off-rate.


Assuntos
Proteínas de Escherichia coli/metabolismo , RNA Ribossômico/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Cães , Proteínas de Escherichia coli/química , Proteínas de Membrana/metabolismo , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutação , Ligação Proteica , Dobramento de RNA , RNA Ribossômico/química , RNA Ribossômico/genética , Subunidades Ribossômicas/química , Subunidades Ribossômicas/genética , Subunidades Ribossômicas/metabolismo , Canais de Translocação SEC
12.
J Theor Biol ; 317: 377-83, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23123454

RESUMO

The extracellular matrix (ECM) is a major component of tissues of multicellular organisms. It consists of secreted macromolecules, mainly polysaccharides and glycoproteins. Malfunctions of ECM proteins lead to severe disorders such as marfan syndrome, osteogenesis imperfecta, numerous chondrodysplasias, and skin diseases. In this work, we report a random forest approach, EcmPred, for the prediction of ECM proteins from protein sequences. EcmPred was trained on a dataset containing 300 ECM and 300 non-ECM and tested on a dataset containing 145 ECM and 4187 non-ECM proteins. EcmPred achieved 83% accuracy on the training and 77% on the test dataset. EcmPred predicted 15 out of 20 experimentally verified ECM proteins. By scanning the entire human proteome, we predicted novel ECM proteins validated with gene ontology and InterPro. The dataset and standalone version of the EcmPred software is available at http://www.inb.uni-luebeck.de/tools-demos/Extracellular_matrix_proteins/EcmPred.


Assuntos
Algoritmos , Biologia Computacional/métodos , Proteínas da Matriz Extracelular/metabolismo , Inteligência Artificial , Bases de Dados de Proteínas , Humanos , Proteoma/metabolismo , Curva ROC
13.
Traffic ; 13(4): 599-609, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22212716

RESUMO

In peroxisome formation, models of near-autonomous peroxisome biogenesis with membrane protein integration directly from the cytosol into the peroxisomal membrane are in direct conflict with models whereby peroxisomes bud from the endoplasmic reticulum and receive their membrane proteins through a branch of the secretory pathway. We therefore reinvestigated the role of the Sec61 complex, the protein-conducting channel of the endoplasmic reticulum (ER) in peroxisome formation. We found that depletion or partial inactivation of Sec61 in yeast disables peroxisome formation. The ER entry of the early peroxisomal membrane protein Pex3 engineered with a glycosylation tag is reduced in sec61 mutant cells. Moreover, we were able to reconstitute Pex3 import into ER membranes in vitro, and we identified a variant of a signal anchor sequence for ER translocation at the Pex3 N-terminus. Our findings are consistent with a Sec61 requirement for peroxisome formation and a fundamental role of the ER in peroxisome biogenesis.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/fisiologia , Saccharomyces cerevisiae/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Sistemas de Liberação de Medicamentos , Proteínas de Membrana/genética , Dados de Sequência Molecular , Peroxinas , Processamento de Proteína Pós-Traducional , Canais de Translocação SEC , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
BMC Bioinformatics ; 12: 345, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21849049

RESUMO

BACKGROUND: Bioluminescence is a process in which light is emitted by a living organism. Most creatures that emit light are sea creatures, but some insects, plants, fungi etc, also emit light. The biotechnological application of bioluminescence has become routine and is considered essential for many medical and general technological advances. Identification of bioluminescent proteins is more challenging due to their poor similarity in sequence. So far, no specific method has been reported to identify bioluminescent proteins from primary sequence. RESULTS: In this paper, we propose a novel predictive method that uses a Support Vector Machine (SVM) and physicochemical properties to predict bioluminescent proteins. BLProt was trained using a dataset consisting of 300 bioluminescent proteins and 300 non-bioluminescent proteins, and evaluated by an independent set of 141 bioluminescent proteins and 18202 non-bioluminescent proteins. To identify the most prominent features, we carried out feature selection with three different filter approaches, ReliefF, infogain, and mRMR. We selected five different feature subsets by decreasing the number of features, and the performance of each feature subset was evaluated. CONCLUSION: BLProt achieves 80% accuracy from training (5 fold cross-validations) and 80.06% accuracy from testing. The performance of BLProt was compared with BLAST and HMM. High prediction accuracy and successful prediction of hypothetical proteins suggests that BLProt can be a useful approach to identify bioluminescent proteins from sequence information, irrespective of their sequence similarity. The BLProt software is available at http://www.inb.uni-luebeck.de/tools-demos/bioluminescent%20protein/BLProt.


Assuntos
Proteínas Luminescentes/química , Software , Máquina de Vetores de Suporte , Animais , Humanos , Cadeias de Markov
15.
Protein Pept Lett ; 17(12): 1473-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20666727

RESUMO

Apoptosis is an essential process for controlling tissue homeostasis by regulating a physiological balance between cell proliferation and cell death. The subcellular locations of proteins performing the cell death are determined by mostly independent cellular mechanisms. The regular bioinformatics tools to predict the subcellular locations of such apoptotic proteins do often fail. This work proposes a model for the sorting of proteins that are involved in apoptosis, allowing us to both the prediction of their subcellular locations as well as the molecular properties that contributed to it. We report a novel hybrid Genetic Algorithm (GA)/Support Vector Machine (SVM) approach to predict apoptotic protein sequences using 119 sequence derived properties like frequency of amino acid groups, secondary structure, and physicochemical properties. GA is used for selecting a near-optimal subset of informative features that is most relevant for the classification. Jackknife cross-validation is applied to test the predictive capability of the proposed method on 317 apoptosis proteins. Our method achieved 85.80% accuracy using all 119 features and 89.91% accuracy for 25 features selected by GA. Our models were examined by a test dataset of 98 apoptosis proteins and obtained an overall accuracy of 90.34%. The results show that the proposed approach is promising; it is able to select small subsets of features and still improves the classification accuracy. Our model can contribute to the understanding of programmed cell death and drug discovery. The software and dataset are available at http://www.inb.uni-luebeck.de/tools-demos/apoptosis/GASVM.


Assuntos
Proteínas Reguladoras de Apoptose/química , Algoritmos , Inteligência Artificial , Transporte Proteico
16.
Biochem Biophys Res Commun ; 391(3): 1306-11, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19995554

RESUMO

Eukaryotic protein secretion generally occurs via the classical secretory pathway that traverses the ER and Golgi apparatus. Secreted proteins usually contain a signal sequence with all the essential information required to target them for secretion. However, some proteins like fibroblast growth factors (FGF-1, FGF-2), interleukins (IL-1 alpha, IL-1 beta), galectins and thioredoxin are exported by an alternative pathway. This is known as leaderless or non-classical secretion and works without a signal sequence. Most computational methods for the identification of secretory proteins use the signal peptide as indicator and are therefore not able to identify substrates of non-classical secretion. In this work, we report a random forest method, SPRED, to identify secretory proteins from protein sequences irrespective of N-terminal signal peptides, thus allowing also correct classification of non-classical secretory proteins. Training was performed on a dataset containing 600 extracellular proteins and 600 cytoplasmic and/or nuclear proteins. The algorithm was tested on 180 extracellular proteins and 1380 cytoplasmic and/or nuclear proteins. We obtained 85.92% accuracy from training and 82.18% accuracy from testing. Since SPRED does not use N-terminal signals, it can detect non-classical secreted proteins by filtering those secreted proteins with an N-terminal signal by using SignalP. SPRED predicted 15 out of 19 experimentally verified non-classical secretory proteins. By scanning the entire human proteome we identified 566 protein sequences potentially undergoing non-classical secretion. The dataset and standalone version of the SPRED software is available at http://www.inb.uni-luebeck.de/tools-demos/spred/spred.


Assuntos
Inteligência Artificial , Genoma Humano , Proteínas/metabolismo , Proteoma , Análise de Sequência de Proteína/métodos , Animais , Humanos , Proteínas/química , Proteínas/genética
17.
Biochim Biophys Acta ; 1783(12): 2375-83, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18778738

RESUMO

During cotranslational translocation of proteins into the endoplasmic reticulum (ER) translating ribosomes bind to Sec61-complexes. Presently two models exist how these membrane protein complexes might form protein-conducting channels. While electron microscopic data suggest that a ring-like structure consisting of four Sec61-complexes build the channel, the recently solved crystal structure of a homologous bacterial protein complex led to the speculation that the actual tunnel is formed by just one individual Sec61-complex. Using protease protection assays together with quantitative immunoblotting we directly examined the structure of mammalian protein-conducting channels. We found that in native ER-membranes one single Sec61alpha-molecule is preferentially protected by a membrane bound ribosome, both, in the presence and absence of nascent polypeptides. In addition we present evidence that the nascent polypeptide destabilizes the ring-like translocation apparatus formed by four Sec61-complexes. Moreover, we found that after solubilization of ER-membranes a single Sec61-complex is sufficient to protect the nascent polypeptide chain against added proteases. Finally, we could show that this single Sec61-complex allows the movement of the nascent chain, when it has been released from the ribosome by puromycin treatment. Collectively, our data suggest that the active protein-conducting channel in the ER is formed by a single Sec61-complex.


Assuntos
Retículo Endoplasmático Rugoso/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Pâncreas/metabolismo , Ribossomos/ultraestrutura , Animais , Cães , Marcação de Genes , Elongação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , Transporte Proteico , Ribossomos/metabolismo , Canais de Translocação SEC , Transcrição Gênica
18.
EMBO J ; 24(13): 2284-93, 2005 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-15973433

RESUMO

Misfolded secretory proteins are transported across the endoplasmic reticulum (ER) membrane into the cytosol for degradation by proteasomes. A large fraction of proteasomes in a cell is associated with the ER membrane. We show here that binding of proteasomes to ER membranes is salt sensitive, ATP dependent, and mediated by the 19S regulatory particle. The base of the 19S particle, which contains six AAA-ATPases, binds to microsomal membranes with high affinity, whereas the 19S lid complex binds weakly. We demonstrate that ribosomes and proteasomes compete for binding to the ER membrane and have similar affinities for their receptor. Ribosomes bind to the protein conducting channel formed by the Sec61 complex in the ER membrane. We co-precipitated subunits of the Sec61 complex with ER-associated proteasome 19S particles, and found that proteoliposomes containing only the Sec61 complex retained proteasome binding activity. Collectively, our data suggest that the Sec61 channel is a principal proteasome receptor in the ER membrane.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Cães , Membranas Intracelulares/metabolismo , Proteínas de Membrana Transportadoras , Microssomos/metabolismo , Ligação Proteica , Dobramento de Proteína , Transporte Proteico , Ribossomos/metabolismo , Canais de Translocação SEC , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...