Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37512300

RESUMO

The nitrite admixtures in cement and concrete are used as corrosion inhibitors for steel reinforcement and also as anti-freezing agents. The characterization of the protective properties should account for the decrease in the concentration of free NO2- ions in the pores of cement concretes due to their adsorption. Here we applied the classical molecular dynamics computer simulation approach to quantitatively study the molecular scale mechanisms of nitrite adsorption from NaNO2 aqueous solution on a portlandite surface. We used a new parameterization to model the hydrated NO2- ions in combination with the recently upgraded ClayFF force field (ClayFF-MOH) for the structure of portlandite. The new NO2- parameterization makes it possible to reproduce the properties of hydrated NO2- ions in good agreement with experimental data. In addition, the ClayFF-MOH model improves the description of the portlandite structure by explicitly taking into account the bending of Ca-O-H angles in the crystal and on its surface. The simulations showed that despite the formation of a well-structured water layer on the portlandite (001) crystal surface, NO2- ions can be strongly adsorbed. The nitrite adsorption is primarily due to the formation of hydrogen bonds between the structural hydroxyls on the portlandite surface and both the nitrogen and oxygen atoms of the NO2- ions. Due to that, the ions do not form surface adsorption complexes with a single well-defined structure but can assume various local coordinations. However, in all cases, the adsorbed ions did not show significant surface diffusional mobility. Moreover, we demonstrated that the nitrite ions can be adsorbed both near the previously-adsorbed hydrated Na+ ions as surface ion pairs, but also separately from the cations.

2.
Phys Chem Chem Phys ; 22(29): 16727-16733, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32658236

RESUMO

The ability of smectite clays to incorporate gases in their interlayers is shown to be conditioned by interlayer spacing, depending, in turn, on phyllosilicate layer composition and effective size of the charge-balancing cations. As illustrated by earlier in situ X-ray diffraction and spectroscopic characterization of the gas/clay interface, most smectites with small-size charge-balancing cations, such as Na+ or Ca2+, accommodate CO2 and CH4 in their interlayers only in a partially hydrated state resulting in the opening of the basal spacing, above a certain critical value. In the present study CH4 and CO2 adsorption isotherms were measured for Na- and Mg-exchanged montmorillonite up to 9 MPa using a manometric technique. The process of dehydration of these clays was thoroughly characterized by thermogravimetric analysis and powder X-ray diffraction. A dramatic decrease in specific surface area and methane and carbon dioxide adsorption capacities for fully dehydrated samples in comparison to partially dehydrated ones is assigned to the shrinkage of interlayer spacing resulting in its inaccessibility for the entry of CH4 and CO2 molecules. This observation is direct evidence of CH4 and CO2 adsorption capacity variation depending on the opening of smectite clay interlayer spacing.

3.
Phys Chem Chem Phys ; 21(13): 6917-6924, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30865197

RESUMO

The interactions among fluid species such as H2O, CO2, and CH4 confined in nano- and meso-pores in shales and other rocks is of central concern to understanding the chemical behavior and transport properties of these species in the earth's subsurface and is of special concern to geological C-sequestration and enhanced production of oil and natural gas. The behavior of CO2, and CH4 is less well understood than that of H2O. This paper presents the results of a computational modeling study of the partitioning of CO2 and CH4 between bulk fluid and nano- and meso-pores bounded by the common clay mineral montmorillonite. The calculations were done at 323 K and a total fluid pressure of 124 bars using a novel approach (constant reservoir composition molecular dynamics, CRC-MD) that uses bias forces to maintain a constant composition in the fluid external to the pore. This purely MD approach overcomes the difficulties in making stochastic particle insertion-deletion moves in dense fluids encountered in grand canonical Monte Carlo and related hybrid approaches. The results show that both the basal siloxane surfaces and protonated broken edge surfaces of montmorillonite both prefer CO2 relative to CH4 suggesting that methods of enhanced oil and gas production using CO2 will readily displace CH4 from such pores. This preference for CO2 is due to its preferred interaction with the surfaces and extends to approximately 20 Å from them.

4.
Langmuir ; 26(20): 15909-19, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20857966

RESUMO

Natural organic matter (NOM, or humic substance) has a known tendency to form colloidal aggregates in aqueous environments, with the composition and concentration of cationic species in solution, pH, temperature, and the composition of the NOM itself playing important roles. Strong interaction of carboxylic groups of NOM with dissolved metal cations is thought to be the leading chemical interaction in NOM supramolecular aggregation. Computational molecular dynamics (MD) study of the interactions of Na(+), Mg(2+), and Ca(2+) with the carboxylic groups of a model NOM fragment and acetate anions in aqueous solutions provides new quantitative insight into the structure, energetics, and dynamics of the interactions of carboxylic groups with metal cations, their association, and the effects of cations on the colloidal aggregation of NOM molecules. Potentials of mean force and the equilibrium constants describing overall ion association and the distribution of metal cations between contact ion pairs and solvent-separated ions pairs were computed from free MD simulations and restrained umbrella sampling calculations. The results provide insight into the local structural environments of metal-carboxylate association and the dynamics of exchange among these sites. All three cations prefer contact ion pair to solvent-separated ion pair coordination, and Na(+) and Ca(2+) show a strong preference for bidentate contact ion pair formation. The average residence time of a Ca(2+) ion in a contact ion pair with the carboxylic groups is of the order of 0.5 ns, whereas the corresponding residence time of a Na(+) ion is only between 0.02 and 0.05 ns. The average residence times of a Ca(2+) ion in a bidentate coordinated contact ion pair vs a monodentate coordinated contact ion pair are about 0.5 and 0.08 ns, respectively. On the 10 ns time scale of our simulations, aggregation of the NOM molecules occurs in the presence of Ca(2+) but not Na(+) or Mg(2+). These results agree with previous experimental observations and are explained by both Ca(2+) ion bridging between NOM molecules and decreased repulsion between the NOM molecules due to the reduced net charge of the NOM-metal complexes. Simulations on a larger scale are needed to further explore the relative importance of the different aggregation mechanisms and the stability of NOM aggregates.

5.
Phys Chem Chem Phys ; 11(41): 9420-30, 2009 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-19830325

RESUMO

We describe a new multistate empirical valence bond (MS-EVB) model of OH(-) in aqueous solutions. This model is based on the recently proposed "charged ring" parameterization for the intermolecular interaction of hydroxyl ion with water [Ufimtsev, et al., Chem. Phys. Lett., 2007, 442, 128] and is suitable for classical molecular simulations of OH(-) solvation and transport. The model reproduces the hydration structure of OH(-)(aq) in good agreement with experimental data and the results of ab initio molecular dynamics simulations. It also accurately captures the major structural, energetic, and dynamic aspects of the proton transfer processes involving OH(-) (aq). The model predicts an approximately two-fold increase of the OH(-) mobility due to proton exchange reactions.

6.
J Phys Chem B ; 113(3): 794-802, 2009 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19108639

RESUMO

A comprehensive Car-Parrinello molecular dynamics (CP-MD) study of aqueous solutions of carbonic acid (H(2)CO(3)), bicarbonate (HCO(3)(-)), carbonate (CO(3)(2-)), and carbon dioxide (CO(2)) provides new quantitative insight into the structural and dynamic aspects of the hydrogen-bonding environments for these important aqueous species and their effects on the structure, H-bonding, and dynamical behavior of the surrounding water molecules. The hydration structures of the different carbonate species depend on their ability to accept and donate H-bonds with H(2)O. The H-bonds donated by the C-O-H sites of the carbonate species to water molecules are generally stronger and longer-lived than those accepted by these sites from water molecules. The structural relaxation among the water molecules is dominated by diffusional (translational) motion of H(2)O, whereas the H-bond reorganization is dominated by the librational motion of the water molecules and the carbonate species. The rates of structural relaxation of the H(2)O molecules and the rates of H-bond reorganization among them are slower in systems containing carbonate species, consistent with previous studies of simple salt solutions. The strengths and lifetimes of H-bonds involving the carbonate species positively correlate with the total negative charge on the species. H-bond donation from H(2)O to CO(2) is weak, but the presence of CO(2) noticeably affects the structure and structural relaxation of the surrounding H-bonding network leading to generally stronger H-bonds and slower relaxation rates, the behavior typical of a hydrophobic solute.

7.
J Chem Phys ; 126(20): 204315, 2007 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-17552770

RESUMO

A comprehensive metadynamics study of the energetics, stability, conformational changes, and mechanism of dissociation of gas phase carbonic acid, H2CO3, yields significant new insight into these reactions. The equilibrium geometries, vibrational frequencies, and conformer energies calculated using the density functional theory are in good agreement with the previous theoretical predictions. At 315 K, the cis-cis conformer has a very short life time and transforms easily to the cis-trans conformer through a change in the O=C-O-H dihedral angle. The energy difference between the trans-trans and cis-trans conformers is very small (approximately 1 kcal/mol), but the trans-trans conformer is resistant to dissociation to carbon dioxide and water. The cis-trans conformer has a relatively short path for one of its hydroxyl groups to accept the proton from the other end of the molecule, resulting in a lower activation barrier for dissociation. Comparison of the free and potential energies of dissociation shows that the entropic contribution to the dissociation energy is less than 10%. The potential energy barrier for dissociation of H2CO3 to CO2 and H2O from the metadynamics calculations is 5-6 kcal/mol lower than in previous 0 K studies, possibly due to a combination of a finite temperature and more efficient sampling of the energy landscape in the metadynamics calculations. Gas phase carbonic acid dissociation is triggered by the dehydroxylation of one of the hydroxyl groups, which reorients as it approaches the proton on the other end of the molecule, thus facilitating a favorable H-O-H angle for the formation of a product H2O molecule. The major atomic reorganization of the other part of the molecule is a gradual straightening of the O=C=O bond. The metadynamics results provide a basis for future simulation of the more challenging carbonic acid-water system.


Assuntos
Ácido Carbônico/química , Físico-Química/métodos , Dióxido de Carbono/química , Simulação por Computador , Gases , Hidrogênio/química , Modelos Moleculares , Modelos Teóricos , Conformação Molecular , Estrutura Molecular , Prótons , Espectrofotometria/métodos , Temperatura , Termodinâmica , Água/química
8.
J Phys Chem B ; 110(9): 3841-4, 2006 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-16509661

RESUMO

Molecular dynamics (MD) simulation of the Mg/Al (3:1) layered double hydroxide (LDH), hydrotalcite (HT), containing citrate, C6H5O7(3-), as the charge balancing interlayer anion provides new molecular scale insight into the interlayer structure, hydrogen bonding, and energetics of the hydration and consequent swelling of LDH compounds containing organic and biomolecules. Citrate-HT exhibits affinity for water up to very high hydration levels, in contrast to the preferred low hydration states of most LDHs intercalated with small, inorganic anions. This result is consistent with the recent experimental observation of the delamination of lactate-HT. The high water affinity is rationalized in terms of the preference of citrate ion for hydrogen bonds (H-bonds) donated from water molecules rather than from the hydroxyl groups of the metal hydroxide layer and the need to develop an integrated interlayer H-bond network among the citrate ions, water, and -OH groups of the hydroxide layers. The changes in the orientation of citrate molecules with progressive hydration are also intimately related to its preference to accept hydrogen bonds from water.

9.
J Phys Chem B ; 109(30): 14308-13, 2005 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16852798

RESUMO

Molecular dynamics (MD) simulations of water confined in nanospaces between layers of talc (system composition Mg(3)Si(4)O(10)(OH)(2) + 2H(2)O) at 300 K and pressures of approximately 0.45 GPa show the presence of a novel 2-D ice structure, and the simulation results at lower pressures provide insight into the mechanisms of its decompression melting. Talc is hydrophobic at ambient pressure and temperature, but weak hydrogen bonding between the talc surface and the water molecules plays an important role in stabilizing the hydrated structure at high pressure. The simulation results suggest that experimentally accessible elevated pressures may cause formation of a wide range of previously unknown water structures in nanoconfinement. In the talc 2-D ice, each water molecule is coordinated by six O(b) atoms of one basal siloxane sheet and three water molecules. The water molecules are arranged in a buckled hexagonal array in the a-b crystallographic plane with two sublayers along [001]. Each H(2)O molecule has four H-bonds, accepting one from the talc OH group and one from another water molecule and donating one to an O(b) and one to another water molecule. In plan view, the molecules are arranged in six-member rings reflecting the substrate talc structure. Decompression melting occurs by migration of water molecules to interstitial sites in the centers of six-member rings and eventual formation of separate empty and water-filled regions.

10.
J Phys Chem B ; 109(33): 15893-905, 2005 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16853018

RESUMO

Molecular dynamics (MD) computer simulations of liquid water adsorbed on the muscovite (001) surface provide a greatly increased, atomistically detailed understanding of surface-related effects on the spatial variation in the structural and orientational ordering, hydrogen bond (H-bond) organization, and local density of H2O molecules at this important model phyllosilicate surface. MD simulations at constant temperature and volume (statistical NVT ensemble) were performed for a series of model systems consisting of a two-layer muscovite slab (representing 8 crystallographic surface unit cells of the substrate) and 0 to 319 adsorbed H2O molecules, probing the atomistic structure and dynamics of surface aqueous films up to 3 nm in thickness. The results do not demonstrate a completely liquid-like behavior, as otherwise suggested from the interpretation of X-ray reflectivity measurements and earlier Monte Carlo simulations. Instead, a more structurally and orientationally restricted behavior of surface H2O molecules is observed, and this structural ordering extends to larger distances from the surface than previously expected. Even at the largest surface water coverage studied, over 20% of H2O molecules are associated with specific adsorption sites, and another 50% maintain strongly preferred orientations relative to the surface. This partially ordered structure is also different from the well-ordered 2-dimensional ice-like structure predicted by ab initio MD simulations for a system with a complete monolayer water coverage. However, consistent with these ab initio results, our simulations do predict that a full molecular monolayer surface water coverage represents a relatively stable surface structure in terms of the lowest diffusional mobility of H2O molecules along the surface. Calculated energies of water adsorption are in good agreement with available experimental data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...