Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 74(12): 3488-3502, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36929394

RESUMO

The rye genome has a large size with a high level of cytosine methylation, which makes it particularly convenient for studying the occurrence of potential cytosine demethylation intermediates. Levels of global 5-hydroxymethylcytosine (5hmC) were analysed by enzyme-linked immunosorbent assay (ELISA) and mass spectrometry in four rye species: Secale cereale, Secale strictum, Secale sylvestre, and Secale vavilovii. The amount of 5hmC showed interspecific variation, and was also variable among organs, i.e. coleoptiles, roots, leaves, stems, and caryopses. 5-Formylcytosine (5fC), 5-carboxycytosine (5caC), and 5-hydroxymethyluracil (5hmU) were also found to be present in the DNA of all species; their global level varied among species and organs. The 5hmC level clearly correlated with the 5-methylcytosine (5mC) quantity. The mass spectrometry analysis carried out on the 5mC enriched fraction supported this relationship. Highly methylated sequences also contained higher amounts of 5fC and most of all 5hmU, but not 5caC. The analysis of the distribution of 5hmC in chromosomes distinctly indicated the co-localization of 5mC with 5hmC in the same chromosomal regions. The regularities in the levels of 5hmC and other rare modifications of bases in the DNA may indicate that they play a role in the regulation of the rye genome.


Assuntos
5-Metilcitosina , Secale , Secale/genética , Citosina/análise , Citosina/química , DNA/química , DNA/metabolismo , Metilação de DNA , Cromossomos/química , Cromossomos/metabolismo
2.
Int J Mol Sci ; 24(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36982483

RESUMO

Inbreeding is the crossing of closely related individuals in nature or a plantation or self-pollinating plants, which produces plants with high homozygosity. This process can reduce genetic diversity in the offspring and decrease heterozygosity, whereas inbred depression (ID) can often reduce viability. Inbred depression is common in plants and animals and has played a significant role in evolution. In the review, we aim to show that inbreeding can, through the action of epigenetic mechanisms, affect gene expression, resulting in changes in the metabolism and phenotype of organisms. This is particularly important in plant breeding because epigenetic profiles can be linked to the deterioration or improvement of agriculturally important characteristics.


Assuntos
Endogamia , Melhoramento Vegetal , Animais , Epigênese Genética , Plantas/genética , Heterozigoto
3.
PLoS One ; 15(10): e0240869, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33057421

RESUMO

The rye (Secale L.) genome is large, and it contains many classes of repetitive sequences. Secale species differ in terms of genome size, heterochromatin content, and global methylation level; however, the organization of individual types of sequences in chromosomes is relatively similar. The content of the abundant subtelomeric heterochromatin fraction in rye do not correlate with the global level of cytosine methylation, hence immunofluorescence detection of 5-methylcytosine (5-mC) distribution in metaphase chromosomes was performed. The distribution patterns of 5-methylcytosine in the chromosomes of Secale species/subspecies were generally similar. 5-methylcytosine signals were dispersed along the entire length of the chromosome arms of all chromosomes, indicating high levels of methylation, especially at retrotransposon sequences. 5-mC signals were absent in the centromeric and telomeric regions, as well as in subtelomeric blocks of constitutive heterochromatin, in each of the taxa studied. Pericentromeric domains were methylated, however, there was a certain level of polymorphism in these areas, as was the case with the nucleolus organizer region. Sequence methylation within the region of the heterochromatin intercalary bands were also demonstrated to be heterogenous. Unexpectedly, there was a lack of methylation in rye subtelomeres, indicating that heterochromatin is a very diverse fraction of chromatin, and its epigenetic regulation or potential influence on adjacent regions can be more complex than has conventionally been thought. Like telomeres and centromeres, subtelomeric heterochromatin can has a specific role, and the absence of 5-mC is required to maintain the heterochromatin state.


Assuntos
5-Metilcitosina/metabolismo , Cromossomos de Plantas/metabolismo , Secale/metabolismo , Mapeamento Cromossômico , Epigênese Genética , Tamanho do Genoma , Metáfase , Secale/classificação , Secale/genética
4.
Comp Cytogenet ; 14(2): 265-311, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733650

RESUMO

The centromere is a chromosomal region where the kinetochore is formed, which is the attachment point of spindle fibers. Thus, it is responsible for the correct chromosome segregation during cell division. Telomeres protect chromosome ends against enzymatic degradation and fusions, and localize chromosomes in the cell nucleus. For this reason, centromeres and telomeres are parts of each linear chromosome that are necessary for their proper functioning. More and more research results show that the identity and functions of these chromosomal regions are epigenetically determined. Telomeres and centromeres are both usually described as highly condensed heterochromatin regions. However, the epigenetic nature of centromeres and telomeres is unique, as epigenetic modifications characteristic of both eu- and heterochromatin have been found in these areas. This specificity allows for the proper functioning of both regions, thereby affecting chromosome homeostasis. This review focuses on demonstrating the role of epigenetic mechanisms in the functioning of centromeres and telomeres in plants and animals.

5.
PLoS One ; 15(2): e0228353, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32040511

RESUMO

Counting chromosomes is the first step towards a better understanding of the karyotype evolution and the role of chromosome evolution in species diversification within Carex; however, the chromosome count is not known yet for numerous sedges. In this paper chromosome counts were performed for 23 Carex taxa from Armenia, Austria, the Czech Republic, and Poland. Chromosome numbers were determined for the first time in three species (Carex cilicica, 2n = 54; C. phyllostachys, 2n = 56; C. randalpina, 2n = 78), two subspecies (C. muricata subsp. ashokae, 2n = 58; C. nigra subsp. transcaucasica, 2n = 84) and two hybrids (C. ×decolorans, 2n = 74; C. ×walasii, 2n = 108). Among the taxa whose number of chromosomes had been known before, the largest difference was found in C. hartmaniorum (here 2n = 52) and C. aterrima subsp. medwedewii (here 2n = 52). A difference in the chromosome count was demonstrated for C. cilicica (2n = 54) versus the species of the section Aulocystis (2n = 30 to 40) and for C. tomentosa (2n = 48) versus the species of the section Acrocystis (2n = 18 to 38). The results of this study indicate that the position of C. cilicica in Aulocystis section may raise doubts. Attention was paid to the relationship between C. phyllostachys and taxa of the subgenus Carex section Gynobasidae.


Assuntos
Carex (Planta)/classificação , Carex (Planta)/genética , Cromossomos de Plantas/genética , Evolução Molecular , Variação Genética , Filogenia , Armênia , Áustria , República Tcheca , Polônia
6.
Planta ; 247(4): 807-829, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29234880

RESUMO

MAIN CONCLUSION: The analysis of early generations of triticale showed numerous rearrangements of the genome. Complexed transformation included loss of chromosomes, t-heterochromatin content changes and the emergence of retrotransposons in new locations. This study investigated certain aspects of genomic transformations in the early generations (F5 and F8) of the primary octoploid triticale derived from the cross of hexaploid wheat with the diploid rye. Most of the plants tested were hypoploid; among eliminated chromosomes were rye chromosomes 4R and 5R and variable number of wheat chromosomes. Wheat chromosomes were eliminated to a higher extent. The lower content of telomeric heterochromatin was also found in rye chromosomes in comparison with parental rye. Studying the location of selected retrotransposons from Ty1-copia and Ty3-gypsy families using fluorescence in situ hybridization revealed additional locations of these retrotransposons that were not present in chromosomes of parental species. ISSR, IRAP and REMAP analyses showed significant changes at the level of specific DNA nucleotide sequences. In most cases, the disappearance of certain types of bands was observed, less frequently new types of bands appeared, not present in parental species. This demonstrates the scale of genome rearrangement and, above all, the elimination of wheat and rye sequences, largely due to the reduction of chromosome number. With regard to the proportion of wheat to rye genome, the rye genome was more affected by the changes, thus this study was focused more on the rye genome. Observations suggest that genome reorganization is not finished in the F5 generation but is still ongoing in the F8 generation.


Assuntos
Genoma de Planta/genética , Poliploidia , Secale/genética , Triticum/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Rearranjo Gênico/genética , Heterocromatina/genética , Hibridização in Situ Fluorescente , Retroelementos/genética , Telômero/genética
7.
PeerJ ; 5: e2889, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28149679

RESUMO

Methylation of cytosine in DNA is one of the most important epigenetic modifications in eukaryotes and plays a crucial role in the regulation of gene activity and the maintenance of genomic integrity. DNA methylation and other epigenetic mechanisms affect the development, differentiation or the response of plants to biotic and abiotic stress. This study compared the level of methylation of cytosines on a global (ELISA) and genomic scale (MSAP) between the species of the genus Secale. We analyzed whether the interspecific variation of cytosine methylation was associated with the size of the genome (C-value) and the content of telomeric heterochromatin. MSAP analysis showed that S. sylvestre was the most distinct species among the studied rye taxa; however, the results clearly indicated that these differences were not statistically significant. The total methylation level of the studied loci was very similar in all taxa and ranged from 60% in S. strictum ssp. africanum to 66% in S. cereale ssp. segetale, which confirmed the lack of significant differences in the sequence methylation pattern between the pairs of rye taxa. The level of global cytosine methylation in the DNA was not significantly associated with the content of t-heterochromatin and did not overlap with the existing taxonomic rye relationships. The highest content of 5-methylcytosine was found in S. cereale ssp. segetale (83%), while very low in S. strictum ssp. strictum (53%), which was significantly different from the methylation state of all taxa, except for S. sylvestre. The other studied taxa of rye had a similar level of methylated cytosine ranging from 66.42% (S. vavilovii) to 74.41% in (S. cereale ssp. afghanicum). The results obtained in this study are evidence that the percentage of methylated cytosine cannot be inferred solely based on the genome size or t-heterochromatin. This is a significantly more complex issue.

8.
PeerJ ; 4: e2800, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28028470

RESUMO

The genus Elatine contains ca 25 species, all of which are small, herbaceous annuals distributed in ephemeral waters on both hemispheres. However, due to a high degree of morphological variability (as a consequence of their amphibious life-style), the taxonomy of this genus remains controversial. Thus, to fill this gap in knowledge, we present a detailed molecular phylogenetic study of this genus based on nuclear (rITS) and plastid (accD-psaI, psbJ-petA, ycf6-psbM-trnD) sequences using 27 samples from 13 species. On the basis of this phylogenetic analysis, we provide a solid phylogenetic background for the modern taxonomy of the European members of the genus. Traditionally accepted sections of this tree (i.e., Crypta and Elatinella) were found to be monophyletic; only E. borchoni-found to be a basal member of the genus-has to be excluded from the latter lineage to achieve monophyly. A number of taxonomic conclusions can also be drawn: E. hexandra, a high-ploid species, is most likely a stabilised hybrid between the main sections; E. campylosperma merits full species status based on both molecular and morphological evidence; E. gussonei is a more widespread and genetically diverse species with two main lineages; and the presence of the Asian E. ambigua in the European flora is questionable. The main lineages recovered in this analysis are also supported by a number of synapomorphic morphological characters as well as uniform chromosome counts. Based on all the evidence presented here, two new subsections within Elatinella are described: subsection Hydropipera consisting of the temperate species of the section, and subsection Macropodae including the Mediterranean species of the section.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...