Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Probes ; 53: 101613, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32504787

RESUMO

Cucurbit yellow stunting disorder virus (CYSDV) is a single-stranded positive-sense RNA virus that produces devastating disease in watermelon and squash. Foliar symptoms of CYSDV consist of interveinal yellowing, brittleness, and thickening of older leaves leading to reduced plant vigor. A rapid diagnostic method for CYSDV would facilitate early detection and implementation of best viral-based management practices. We developed a rapid isothermal reverse transcription-recombination polymerase amplification (exo RT-RPA) assay for the detection of CYSDV. The primers and a 6-fluorescein amidite (6-FAM) probe were developed to target the nucleocapsid gene. The real-time assay detected CYSDV at 2.5 pg purified total RNA extracted from CYSDV-infected leaf tissue and corresponded to 10 copies of the target molecule. The assay was specific and did not cross-react with other common cucurbit viruses found in Florida and Georgia. The performance of the exo RT-RPA was evaluated using crude extract from 21 cucurbit field samples and demonstrated that the exo RT-RPA is a rapid procedure, thus providing a promising novel alternative approach for the detection of CYSDV.


Assuntos
Citrullus/virologia , Crinivirus/isolamento & purificação , Cucurbita/virologia , Proteínas do Nucleocapsídeo/genética , Doenças das Plantas/virologia , Crinivirus/genética , Diagnóstico Precoce , Fluorescência , Corantes Fluorescentes/química , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Folhas de Planta/virologia , Transcrição Reversa , Sensibilidade e Especificidade
2.
Viruses ; 9(10)2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28994713

RESUMO

The plant viral family Luteoviridae is divided into three genera: Luteovirus, Polerovirus and Enamovirus. Without assistance from another virus, members of the family are confined to the cells of the host plant's vascular system. The first open reading frame (ORF) of poleroviruses and enamoviruses encodes P0 proteins which act as silencing suppressor proteins (VSRs) against the plant's viral defense-mediating RNA silencing machinery. Luteoviruses, such as barley yellow dwarf virus-PAV (BYDV-PAV), however, have no P0 to carry out the VSR role, so we investigated whether other proteins or RNAs encoded by BYDV-PAV confer protection against the plant's silencing machinery. Deep-sequencing of small RNAs from plants infected with BYDV-PAV revealed that the virus is subjected to RNA silencing in the phloem tissues and there was no evidence of protection afforded by a possible decoy effect of the highly abundant subgenomic RNA3. However, analysis of VSR activity among the BYDV-PAV ORFs revealed systemic silencing suppression by the P4 movement protein, and a similar, but weaker, activity by P6. The closely related BYDV-PAS P4, but not the polerovirus potato leafroll virus P4, also displayed systemic VSR activity. Both luteovirus and the polerovirus P4 proteins also showed transient, weak local silencing suppression. This suggests that systemic silencing suppression is the principal mechanism by which the luteoviruses BYDV-PAV and BYDV-PAS minimize the effects of the plant's anti-viral defense.


Assuntos
Luteovirus/metabolismo , Proteínas do Movimento Viral em Plantas/metabolismo , Interferência de RNA , Sequenciamento de Nucleotídeos em Larga Escala , Luteoviridae/química , Luteoviridae/metabolismo , Luteovirus/química , Luteovirus/genética , Luteovirus/patogenicidade , Floema/virologia , Filogenia , Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas/genética , RNA Viral/genética
3.
Gene ; 557(2): 130-7, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25498335

RESUMO

BACKGROUND: Abiotic and biotic stresses alter genome stability and physiology of plants. Under some stressful situations, a state of stress tolerance can be passed on to the offspring rendering them more suitable to stressful events than their parents. In plants, the exploration of transgenerational response has remained exclusive to model species, such as Arabidopsis thaliana. Here, we expand transgenerational research to include Brassica rapa, a close relative to economically important plant canola (Brassica napus), as it is exposed to the biotic stress of a double-stranded DNA virus Cauliflower mosaic virus (CaMV). RESULTS: Parent plants exposed to a low dose of 50ng purified CaMV virions just prior to the bolting stage produced significantly larger seeds than mock inoculated and healthy treatments. The progeny from these large seeds displayed resistance to the pathogen stress applied in the parental generation. Differences in defense pathways involving fatty acids, and primary and secondary metabolites were detected by de novo transcriptome sequencing of CaMV challenged progeny exhibiting different levels of resistance. CONCLUSIONS: Our study highlights biological and cellular processes that may be linked to the growth and yield of economically important B. rapa, in a transgenerational manner. Although much remains unknown as to the mechanisms behind transgenerational inheritance, our work shows a disease resistance response that persists for several weeks and is associated with an increase in seed size. Evidence suggests that a number of changes involved in the persistent stress adaption are reflected in the transcriptome. The results from this study demonstrate that treating B. rapa with dsDNA virus within a critical time frame and with a specified amount of infectious pathogen produces economically important agricultural plants with superior coping strategies for growing in unfavorable conditions.


Assuntos
Brassica rapa/metabolismo , Caulimovirus/fisiologia , Sementes/metabolismo , Brassica rapa/anatomia & histologia , Brassica rapa/imunologia , Brassica rapa/virologia , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Interações Hospedeiro-Patógeno , Anotação de Sequência Molecular , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/anatomia & histologia , Sementes/imunologia , Sementes/virologia , Transcriptoma
4.
Virus Res ; 178(2): 306-13, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24076299

RESUMO

Rubus yellow net virus (RYNV) was cloned and sequenced from a red raspberry (Rubus idaeus L.) plant exhibiting symptoms of mosaic and mottling in the leaves. Its genomic sequence indicates that it is a distinct member of the genus Badnavirus, with 7932bp and seven ORFs, the first three corresponding in size and location to the ORFs found in the type member Commelina yellow mottle virus. Bioinformatic analysis of the genomic sequence detected several features including nucleic acid binding motifs, multiple zinc finger-like sequences and domains associated with cellular signaling. Subsequent sequencing of the small RNAs (sRNAs) from RYNV-infected R. idaeus leaf tissue was used to determine any RYNV sequences targeted by RNA silencing and identified abundant virus-derived small RNAs (vsRNAs). The majority of the vsRNAs were 22-nt in length. We observed a highly uneven genome-wide distribution of vsRNAs with strong clustering to small defined regions distributed over both strands of the RYNV genome. Together, our data show that sequences of the aphid-transmitted pararetrovirus RYNV are targeted in red raspberry by the interfering RNA pathway, a predominant antiviral defense mechanism in plants.


Assuntos
Badnavirus/genética , DNA Viral/química , DNA Viral/genética , Genoma Viral , RNA Interferente Pequeno/genética , Badnavirus/isolamento & purificação , Análise por Conglomerados , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Interferência de RNA , Rosaceae/imunologia , Rosaceae/virologia , Análise de Sequência de DNA
5.
Plant Dis ; 96(12): 1729-1735, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30727252

RESUMO

A dramatic increase in the incidence of late blight and changes within populations of Phytophthora infestans have been observed in various regions of Canada. In this study, the occurrence of several new genotypes of the pathogen was documented with associated phenotypes that dominated pathogen populations. Genotype US-23, previously detected only among isolates from the United States, dominated in the western Canadian provinces of British Columbia, Alberta (AB), Saskatchewan, and Manitoba (MB). Although isolates of US-23 infect both potato and tomato, these isolates were the only genotype recovered from commercial garden centers in Canada. Isolates of genotype US-8, previously dominant throughout Canada, represented the only genotype detected from the eastern Canadian provinces of New Brunswick and Prince Edward Island. Isolates of other genotypes detected in Canada included US-11 in AB, US-24 in MB, and US-22 in Ontario (ON). An additional genotype was detected in ON which appears to be a derivative of US-22 that may have arisen through sexual reproduction. However, evidence of clonal reproduction dominated among the isolates collected, and opportunities for sexual reproduction were probably limited because of a surprising geographic separation of the A1 and A2 mating types in Canada. Sensitivity of the US-22, US-23, and US-24 isolates to the fungicide metalaxyl, movement of potato seed and transplants, and weather conditions may have contributed to reduced opportunities for contact between the mating types in fields in Canada. All P. infestans isolates were readily distinguished from other related oomycetes with RG57 restriction fragment length polymorphism analysis. Long-distance movement in seed tubers and garden center transplants may have contributed to the rapid spread of the P. infestans genotypes across Canada. Tracking pathogen movement and population composition should improve the ability to predict the genotypes expected each year in different regions of Canada.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...