Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 935: 173299, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38761954

RESUMO

As humanity embarks on the journey to establish permanent colonies on Mars, ensuring a reliable source of sustenance will be crucial. Therefore, detailed studies regarding crop cultivation using Martian simulants are of great importance. This study aimed to grow wheat on substrates based on soil and Martian simulants, with the addition of vermicompost, to investigate the differences in wheat development. Basic physical and chemical properties of substrates were examined, including determination of macro- and microelements as well as their microbiological properties. Plant growth parameters were also determined. The addition of vermicompost positively affected wheat grown on soil, but the effect on plants grown on substrate with Martian simulants was negligible. Comparing the microbiological and chemical components, it was observed that plants can defend themselves against the negative effects of growth on the Martian simulants, but their success depends on having the PGPR (Plant growth-promoting rhizobacteria) present, which can provide the plant with additional nitrogen. The presence of beneficial symbiotic microbiota will allow the wheat to wait out the negative growth time rather than adapt to the regolith environment.


Assuntos
Solo , Triticum , Triticum/crescimento & desenvolvimento , Solo/química , Marte , Microbiologia do Solo , Microbiota/efeitos dos fármacos , Compostagem/métodos
2.
Sci Total Environ ; 892: 164757, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37308006

RESUMO

The research was aimed at determining the possibility of recovering part of nutrients by precipitation from greenhouse wastewater (GW) from soilless tomato cultivation. Analyses included such elements as: P, S, N, Cl, Ca, Mg, K, Mo, Mn, Fe, Zn, Cu, and B. Three alkalizing agents were tested in a pH range of 6.5-12.0: Ca(OH)2, KOH, and NH4OH, which simultaneously enrich greenhouse wastewater in calcium, potassium, and nitrogen. It was determined what dose of the alkalizing agent should be used, how the composition of the treated GW will change, how much and what kind of sludge will be formed, what will be the stability and technical possibility of sediment separation, and whether the type of alkalizing agent affects the course of the process. Precipitation triggered by the alkalizing agents proved to be an effective method for the recovery of phosphorus, calcium, magnesium, manganese, and boron, while it turned out ineffective in the case of the other elements tested, including nitrogen and potassium. Phosphorus recovery depended mainly on GW pH and forms of phosphate ions corresponding to this pH, and not on the alkalizing agent type. The pH value adjustment to pH = 9 for KOH and NH4OH and to pH = 9.5 for Ca(OH)2 ensured <99 % phosphorus recovery, which corresponded to P concentration in GW below 1 mgP/L and to the applied Ca(OH)2, KOH, and NH4OH doses of 0.20 g/L, 0.28 g/L, and 0.08 g/L, respectively. The highest P contents in the sludge were determined at pH = 7 and reached 18.0 %, 16.8 %, and 16.3 % in the experimental series with Ca(OH)2, KOH, and NH4OH, respectively. The sludge volume index increase along with pH increase up to pH = 10.5 for KOH and to pH = 11 for Ca(OH)2 and NH4OH.


Assuntos
Solanum lycopersicum , Águas Residuárias , Fósforo , Esgotos/química , Cálcio , Minerais , Potássio , Nitrogênio/análise
3.
Materials (Basel) ; 15(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36363110

RESUMO

The traditional demolition process for brickwork buildings results in a significant volume of mixed debris. The debris consists of ceramic bricks (and other wall elements), mortar, thermal insulation (usually expanded polystyrene or rockwool), smaller steel elements, pieces of wood, and glass. Such mixed debris is difficult to recycle. Separating thermal insulation that is "glued" by cement mortar to brickwork is probably the most difficult and time-consuming task in processing mixed debris. This task can be performed in a very different and fully "automatized" manner using Tenebrio molitor mealworms. The mealworms remove expanded polystyrene from brickwork surfaces and transform it into frass. In the paper, a research program aiming to prove the concept of using the mealworms of Tenebrio molitor for processing mixed debris is presented. The tests were conducted using two models of a three-layered brickwork wall, which is very common in Europe. The proposed approached was successful. Both types of used expanded polystyrene foam (EPS) were fully removed from multilayer wall specimens. The possibilities and limitations of the proposed processing method were discussed and analyzed. The conducted research proved that it is feasible to clean brickwork debris from the EPS using Tenebrio molitor mealworms. Differences in the speed of cleaning process regarding the type of EPS were noted. More research is needed to scale the process, and to find the best method for using frass. By using Tenebrio molitor mealworms, one can make the demolition process much cleaner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...