Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 100(2): 144-154, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34031188

RESUMO

The nontaxane microtubule inhibitor eribulin is an approved therapeutic for metastatic breast cancer and liposarcoma. Eribulin was previously tested in unselected patients with lung cancer and yielded a modest objective response rate of ∼5%-12%. Because lung cancers represent diverse histologies and driving oncogenic mutations, we postulated that eribulin may exhibit properties of a precision oncology agent with a previously undefined specificity for a molecularly distinct subset of lung cancers. Herein, we screened a panel of 44 non-small cell and small-cell lung cancer cell lines for in vitro growth sensitivity to eribulin. The results revealed a greater than 15,000-fold range in eribulin sensitivity (IC50 = 0.005-89 nM) among the cell lines that was not correlated with their sensitivity to the taxane-based inhibitor paclitaxel. The quartile of cell lines exhibiting the lowest eribulin IC50 values was not enriched for specific histologies, epithelial-mesenchymal differentiation, or specific oncogene drivers but was significantly enriched for nonsense/frameshift TP53 mutations and low-TP53 mRNA but not missense TP53 mutations. By comparison, the mutation status of cyclin-dependent kinase inhibitor 2A, STK11, and KEAP1 was not associated with eribulin sensitivity. Finally, the highest eribulin IC50 quartile (>1 nM) exhibited significantly elevated mRNA expression of the drug pump, ATP binding cassette B1, defined resistance mechanism to eribulin, and paclitaxel. The findings support further investigations into basic mechanisms by which complete lack of TP53 function regulates anticancer activity of eribulin and the potential utility of TP53 null phenotypes distinct from TP53 missense mutations as a biomarker of response in patients with lung cancer. SIGNIFICANCE STATEMENT: Distinct from precision oncology agents that are matched to cancers bearing oncogenically activated versions of their targets, microtubule inhibitors, such as eribulin, are deployed in an unselected manner. The results in this study demonstrate that lung cancer cell lines exhibiting the highest sensitivity to eribulin bear TP53 null phenotypes, supporting a rationale to consider the status of this tumor suppressor in the clinical setting.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Pequenas/genética , Furanos/farmacologia , Cetonas/farmacologia , Neoplasias Pulmonares/genética , Proteína Supressora de Tumor p53/genética , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma de Células Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Concentração Inibidora 50 , Mutação com Perda de Função , Neoplasias Pulmonares/tratamento farmacológico , Medicina de Precisão
2.
PLoS One ; 14(8): e0220573, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31374110

RESUMO

RATIONALE: In virtually all models of heart failure, prognosis is determined by right ventricular (RV) function; thus, understanding the cellular mechanisms contributing to RV dysfunction is critical. Whole organ remodeling is associated with cell-specific changes, including cardiomyocyte dedifferentiation and activation of cardiac fibroblasts (Cfib) which in turn is linked to disorganization of cytoskeletal proteins and loss of sarcomeric structures. However, how these cellular changes contribute to RV function remains unknown. We've previously shown significant organ-level RV dysfunction in a large animal model of pulmonary hypertension (PH) which was not mirrored by reduced function of isolated cardiomyocytes. We hypothesized that factors produced by the endogenous Cfib contribute to global RV dysfunction by generating a heterogeneous cellular environment populated by dedifferentiated cells. OBJECTIVE: To determine the effect of Cfib conditioned media (CM) from the PH calf (PH-CM) on adult rat ventricular myocytes (ARVM) in culture. METHODS AND RESULTS: Brief exposure (<2 days) to PH-CM results in rapid, marked dedifferentiation of ARVM to a neonatal-like phenotype exhibiting spontaneous contractile behavior. Dedifferentiated cells maintain viability for over 30 days with continued expression of cardiomyocyte proteins including TnI and α-actinin yet exhibit myofibroblast characteristics including expression of α-smooth muscle actin. Using a bioinformatics approach to identify factor(s) that contribute to dedifferentiation, we found activation of the PH Cfib results in a unique transcriptome correlating with factors both in the secretome and with activated pathways in the dedifferentiated myocyte. Further, we identified upregulation of periostin in the Cfib and CM, and demonstrate that periostin is sufficient to drive cardiomyocyte dedifferentiation. CONCLUSIONS: These data suggest that paracrine factor(s) released by Cfib from the PH calf signal a phenotypic transformation in a population of cardiomyocytes that likely contributes to RV dysfunction. Therapies targeting this process, such as inhibition of periostin, have the potential to prevent RV dysfunction.


Assuntos
Desdiferenciação Celular/fisiologia , Fibroblastos/metabolismo , Ventrículos do Coração/metabolismo , Hipertensão Pulmonar/metabolismo , Miócitos Cardíacos/citologia , Disfunção Ventricular Direita/metabolismo , Animais , Bovinos , Modelos Animais de Doenças , Fibroblastos/citologia , Ventrículos do Coração/citologia , Miócitos Cardíacos/metabolismo , Função Ventricular Direita/fisiologia , Remodelação Ventricular
3.
Exp Hematol ; 43(11): 930-935.e6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26118502

RESUMO

Polycomb repressive complex 2 (PRC2) is a chromatin regulator with central roles in development and cancer. The canonical function of PRC2 is the trimethylation of histone 3 on lysine residue 27. This epigenetic modification is associated with gene silencing. Both tumor suppressor and oncogenic functions have been reported for PRC2, depending on cellular context. In leukemia mediated by the leukemogenic fusion MLL-AF9, complete ablation of canonical PRC2 function by genetic inactivation of the core component embryonic ectoderm development (Eed) or by combined pharmacologic inhibition of the PRC2 methyltransferases EZH2 and EZH1 has a strong anti-leukemic effect, and this effect has been linked to de-repression of the PRC2 target locus Cdkn2a. We asked whether inactivation of Cdkn2a is sufficient to restore leukemic activity of Eed-inactivated MLL-AF9 leukemia cells, using combined genetic inactivation of Cdkn2a and Eed. We found that Cdkn2a inactivation partially rescues in vitro and in vivo growth of Eed-inactivated MLL-AF9 cells. However, the growth of Eed-null Cdkn2a-null MLL-AF9 cells in the absence of Cdkn2a remained severely compromised in vitro and in vivo, compared with that of their Eed-floxed Cdkn2a-null counterparts. RNA sequencing analysis revealed that several genes previously implicated in inefficient growth of MLL-AF9-transformed cells, including Gata2, Egr1, and Cdkn2b were de-repressed as a consequence of Eed inactivation. Furthermore, we found that direct binding targets of MLL fusion proteins are negatively enriched in Eed-inactivated Cdkn2a-null MLL-AF9-transformed cells. Our data indicate that interference with PRC2 function affects MLL-AF9-mediated leukemogenesis by both Cdkn2a-dependent and Cdkn2a-independent mechanisms.


Assuntos
Transformação Celular Neoplásica/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Leucemia/metabolismo , Neoplasias Experimentais/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Leucemia/genética , Leucemia/patologia , Camundongos , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Proteínas de Fusão Oncogênica/genética , Complexo Repressor Polycomb 2/genética , Células Tumorais Cultivadas
4.
PeerJ ; 2: e553, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25237603

RESUMO

For the first time we show the effects of deuterium oxide on cell growth and vesicle transport in rat basophilic leukemia (RBL-2H3) cells. RBL-2H3 cells cultured with 15 moles/L deuterium showed decreased cell growth which was attributed to cells not doubling their DNA content. Experimental observations also showed an increase in vesicle speed for cells cultured in deuterium oxide. This increase in vesicle speed was not observed in deuterium oxide cultures treated with a microtubule-destabilizing drug, suggesting that deuterium oxide affects microtubule-dependent vesicle transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...