Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
APL Bioeng ; 8(1): 011501, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38390314

RESUMO

Within the complex tumor microenvironment, cells experience mechanical cues-such as extracellular matrix stiffening and elevation of solid stress, interstitial fluid pressure, and fluid shear stress-that significantly impact cancer cell behavior and immune responses. Recognizing the significance of these mechanical cues not only sheds light on cancer progression but also holds promise for identifying potential biomarkers that would predict therapeutic outcomes. However, standardizing methods for studying how mechanical cues affect tumor progression is challenging. This challenge stems from the limitations of traditional in vitro cell culture systems, which fail to encompass the critical contextual cues present in vivo. To address this, 3D tumor spheroids have been established as a preferred model, more closely mimicking cancer progression, but they usually lack reproduction of the mechanical microenvironment encountered in actual solid tumors. Here, we review the role of mechanical forces in modulating tumor- and immune-cell responses and discuss how grasping the importance of these mechanical cues could revolutionize in vitro tumor tissue engineering. The creation of more physiologically relevant environments that better replicate in vivo conditions will eventually increase the efficacy of currently available treatments, including immunotherapies.

3.
Trends Cancer ; 9(11): 937-954, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37558577

RESUMO

During tumor progression, mechanical abnormalities in the tumor microenvironment (TME) trigger signaling pathways in cells that activate cellular programs, resulting in tumor growth and drug resistance. In this review, we describe mechanisms of action for anti-cancer therapies and mechanotransduction programs that regulate cellular processes, including cell proliferation, apoptosis, survival and phenotype switching. We discuss how the therapeutic response is impacted by the three main mechanical TME abnormalities: high extracellular matrix (ECM) composition and stiffness; interstitial fluid pressure (IFP); and elevated mechanical forces. We also review drugs that normalize these abnormalities or block mechanosensors and mechanotransduction pathways. Finally, we discuss current challenges and perspectives for the development of new strategies targeting mechanically induced drug resistance in the clinic.


Assuntos
Mecanotransdução Celular , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Transdução de Sinais , Matriz Extracelular/patologia , Resistencia a Medicamentos Antineoplásicos , Microambiente Tumoral
4.
Cancers (Basel) ; 15(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37509354

RESUMO

There is an imminent need for novel strategies for the diagnosis and treatment of aggressive triple-negative breast cancer (TNBC). Cell-targeted multifunctional nanomaterials hold great potential, as they can combine precise early-stage diagnosis with local therapeutic delivery to specific cell types. In this study, we used mesoporous silica (MS)-coated gold nanobipyramids (MS-AuNBPs) for fluorescence imaging in the near-infrared (NIR) biological window, along with targeted TNBC treatment. Our MS-AuNBPs, acting partly as light amplification components, allow considerable metal-enhanced fluorescence for a NIR dye conjugated to their surfaces compared to the free dye. Fluorescence analysis confirms a significant increase in the dye's modified quantum yield, indicating that MS-AuNBPs can considerably increase the brightness of low-quantum-yield NIR dyes. Meanwhile, we tested the chemotherapeutic efficacy of MS-AuNBPs in TNBC following the loading of doxorubicin within the MS pores and functionalization to target folate receptor alpha (FRα)-positive cells. We show that functionalized particles target FRα-positive cells with significant specificity and have a higher potency than free doxorubicin. Finally, we demonstrate that FRα-targeted particles induce stronger antitumor effects and prolong overall survival compared to the clinically applied non-targeted nanotherapy, Doxil. Together with their excellent biocompatibility measured in vitro, this study shows that MS-AuNBPs are promising tools to detect and treat TNBCs.

5.
Lab Chip ; 22(20): 3848-3859, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36106479

RESUMO

The control of droplet formation and size using microfluidic devices is a critical operation for both laboratory and industrial applications, e.g. in micro-dosage. Surfactants can be added to improve the stability and control the size of the droplets by modifying their interfacial properties. In this study, a large-scale data set of droplet size was obtained from high-speed imaging experiments conducted on a flow-focusing microchannel where aqueous surfactant-laden droplets were generated in silicone oil. Three types of surfactants were used including anionic, cationic and non-ionic at concentrations below and above the critical micelle concentration (CMC). To predict the final droplet size as a function of flow rates, surfactant type and concentration of surfactant, two data-driven models were built. Using a Bayesian regularised artificial neural network and XGBoost, these models were initially based on four inputs (flow rates of the two phases, interfacial tension at equilibrium and the normalised surfactant concentration). The mean absolute percentage errors (MAPE) show that data-driven models are more accurate (MAPE = 3.9%) compared to semi-empirical models (MAPE = 11.4%). To overcome experimental difficulties in acquiring accurate interfacial tension values under some conditions, both models were also trained with reduced inputs by removing the interfacial tension. The results show again a very good prediction of the droplet diameter. Finally, over 10 000 synthetic data were generated, based on the initial data set, with a Variational Autoencoder (VAE). The high-fidelity of the extended synthetic data set highlights that this method can be a quick and low-cost alternative to study microdroplet formation in future lab on a chip applications, where experimental data may not be readily available.


Assuntos
Técnicas Analíticas Microfluídicas , Tensoativos , Teorema de Bayes , Micelas , Óleos de Silicone
6.
J Colloid Interface Sci ; 605: 204-213, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34329974

RESUMO

Dynamic interfacial tension was studied experimentally during drop formation in a flow-focusing microchannel. A low viscosity silicone oil (4.6 mPa s) was the continuous phase and a mixture of 48% w/w water and 52% w/w glycerol was the dispersed phase. An anionic (sodium dodecylsulfate, SDS), a cationic (dodecyltrimethylammonium bromide, DTAB) and a non-ionic (Triton™ X-100, TX100) surfactant were added in the dispersed phase, at concentrations below and above the critical micelle concentration (CMC). For SDS and DTAB the drop size against continuous phase flowrate curves initially decreased with surfactant concentration and then collapsed to a single curve at concentrations above CMC. For TX100 the curves only collapsed at surfactant concentrations 8.6 times the CMC. From the collapsed curves a correlation of drop size with capillary number was derived, which was used to calculate the dynamic interfacial tension at times as low as 3 ms. The comparison of the surfactant mass transport and adsorption times to the interface against the drop formation times indicated that surfactant adsorption also contributes to the time required to reach equilibrium interfacial tension. Criteria were proposed for drop formation times to ensure that equilibrium interfacial tension has been reached and does not affect the drop formation.


Assuntos
Tensoativos , Água , Adsorção , Dodecilsulfato de Sódio , Tensão Superficial
7.
Mol Cancer Res ; 20(3): 485-497, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782370

RESUMO

Advanced or metastatic pancreatic cancer is highly resistant to existing therapies, and new treatments are urgently needed to improve patient outcomes. Current studies focus on alternative treatment approaches that target the abnormal microenvironment of pancreatic tumors and the resulting elevated mechanical stress in the tumor interior. Nevertheless, the underlying mechanisms by which mechanical stress regulates pancreatic cancer metastatic potential remain elusive. Herein, we used a proteomic assay to profile mechanical stress-induced signaling cascades that drive the motility of pancreatic cancer cells. Proteomic analysis, together with selective protein inhibition and siRNA treatments, revealed that mechanical stress enhances cell migration through activation of the p38 MAPK/HSP27 and JNK/c-Jun signaling axes, and activation of the actin cytoskeleton remodelers: Rac1, cdc42, and myosin II. In addition, mechanical stress upregulated transcription factors associated with epithelial-to-mesenchymal transition and stimulated the formation of stress fibers and filopodia. p38 MAPK and JNK inhibition resulted in lower cell proliferation and more effectively blocked cell migration under mechanical stress compared with control conditions. The enhanced tumor cell motility under mechanical stress was potently reduced by cdc42 and Rac1 silencing with no effects on proliferation. Our results highlight the importance of targeting aberrant signaling in cancer cells that have adapted to mechanical stress in the tumor microenvironment, as a novel approach to effectively limit pancreatic cancer cell migration. IMPLICATIONS: Our findings highlight that mechanical stress activated the p38 MAPK and JNK signaling axis and stimulated pancreatic cancer cell migration via upregulation of the actin cytoskeleton remodelers cdc42 and Rac1.


Assuntos
Neoplasias Pancreáticas , Proteínas Quinases p38 Ativadas por Mitógeno , Citoesqueleto de Actina/metabolismo , Movimento Celular , Proteínas do Citoesqueleto/metabolismo , Humanos , Miosina Tipo II/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteômica , Estresse Mecânico , Microambiente Tumoral , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Neoplasias Pancreáticas
8.
Anticancer Res ; 40(3): 1375-1385, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32132034

RESUMO

BACKGROUND/AIM: As metastasis accounts for most breast cancer (BC)-related deaths, identifying key players becomes research priority. Growth differentiation factor-15 (GDF15), a member of the transforming growth factor-ß superfamily, is affected by the actin cytoskeleton and has been associated with cancer. However, its exact role in BC cell invasiveness is vague. MATERIALS AND METHODS: GDF15 short-hairpin (shRNA)-mediated silencing was used to inhibit GDF15 expression in MCF-7 and MDA-MB-231 BC cells and gene expression of relevant focal adhesion (FA) genes, cell migration, invasion and tumor spheroid invasion were subsequently analyzed. RESULTS: GDF15 silencing promoted cell migration, cell invasion as well as tumor spheroid invasion and up-regulated urokinase plasminogen activator (uPA) and FA genes, integrin-linked kinase (ILK), LIM zinc finger domain containing 1 (LIMS1), α-parvin (PARVA), and RAS suppressor-1 (RSU1). Computational analysis of Cancer Genome Atlas BC dataset however, revealed no significant correlation between GDF15 expression and metastasis pointing towards a more complex molecular interplay between GDF15, actin cytoskeleton and FA-related genes which ultimately affects their expression pattern, in vivo. CONCLUSION: GDF15 suppresses BC cell invasion in vitro through down-regulation of FA genes but its role in BC is more complicated in vivo and warrants further investigation.


Assuntos
Neoplasias da Mama/genética , Adesões Focais/genética , Fator 15 de Diferenciação de Crescimento/genética , Neoplasias da Mama/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Humanos
9.
Front Oncol ; 9: 992, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31612114

RESUMO

Mechanical compression is a common abnormality of brain tumors that has been shown to be responsible for the severe neurological defects of brain cancer patients representing a negative prognostic factor. Indeed, it is of note that patients that undergo resection exhibited higher survival rates than those subjected to biopsy only, suggesting that compressive forces generated during brain tumor growth play a key role in tumor progression. Despite the importance of mechanical compression in brain tumors, there is a lack of studies examining its direct effects on brain cancer cells and the mechanisms involved. In the present study, we used two brain cancer cell lines with distinct metastatic potential, the less aggressive H4 and the highly aggressive A172 cell lines, in order to study the effect of compression on their proliferative and migratory ability. Specifically, we used multicellular tumor spheroids (MCS) embedded in agarose matrix to show that compression strongly impaired their growth. Using mathematical modeling, we estimated the levels of compressive stress generated during the growth of brain MCS and then we applied the respective stress levels on brain cancer cell monolayers using our previously established transmembrane pressure device. By performing a scratch assay, we found that compression strongly induced the migration of the less aggressive H4 cells, while a less pronounced effect was observed for A172 cells. Analysis of the gene expression profile of both cell lines revealed that GDF15 and small GTPases are strongly regulated by mechanical compression, while GDF15 was further shown to be necessary for cells to migrate under compression. Through a phospho-proteomic screening, we further found that compressive stimulus is transmitted through the MEK1/Erk1 signaling pathway, which is also necessary for the migration of brain cancer cells. Finally, our results gave the first indication that GDF15 could regulate and being regulated by MEK1/Erk1 signaling pathway in order to facilitate the compression-induced brain cancer cell migration, rendering them along with small GTPases as potential targets for future anti-metastatic therapeutic innovations to treat brain tumors.

10.
Sci Rep ; 9(1): 10050, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296919

RESUMO

Extracellular matrix (ECM)-adhesion proteins and actin cytoskeleton are pivotal in cancer cell invasion. Ras Suppressor-1 (RSU-1), a cell-ECM adhesion protein that interacts with PINCH-1, thus being connected to Integrin Linked Kinase (ILK), alpha-parvin (PARVA), and actin cytoskeleton, is up-regulated in metastatic breast cancer (BC) samples. Apart from the originally-identified gene (RSU-1L), an alternatively-spliced isoform (RSU-1-X1) has been reported. We used non-invasive MCF-7 cells, expressing only RSU-1L, and highly invasive MDA-MB-231-LM2 expressing both isoforms and generated stable shRNA-transduced cells lacking RSU-1L, while the truncated RSU-1-X1 isoform was depleted by siRNA-mediated silencing. RSU-1L depletion in MCF-7 cells resulted in complete abrogation of tumor spheroid invasion in three-dimensional collagen gels, whereas it promoted MDA-MB-231-LM2 invasion, through a compensatory upregulation of RSU-1-X1. When RSU-1-X1 was also eliminated, RSU-1L-depletion-induced migration and invasion were drastically reduced being accompanied by reduced urokinase plasminogen activator expression. Protein expression analysis in 23 human BC samples corroborated our findings showing RSU-1L to be upregulated and RSU-1-X1 downregulated in metastatic samples. We demonstrate for the first time, that both RSU-1 isoforms promote invasion in vitro while RSU-1L elimination induces RSU-1-X1 upregulation to compensate for the loss. Hence, we propose that both isoforms should be blocked to effectively eliminate metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Matriz Extracelular/metabolismo , Fatores de Transcrição/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Movimento Celular , Humanos , Proteínas com Domínio LIM/metabolismo , Células MCF-7 , Proteínas de Membrana/metabolismo , Terapia de Alvo Molecular , Invasividade Neoplásica , Metástase Neoplásica , Isoformas de Proteínas/genética , RNA Interferente Pequeno/genética , Fatores de Transcrição/genética , Regulação para Cima , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
11.
Cancers (Basel) ; 11(5)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137643

RESUMO

Tumor microenvironment is a critical player in glioma progression, and novel therapies for its targeting have been recently proposed. In particular, stress-alleviation strategies act on the tumor by reducing its stiffness, decreasing solid stresses and improving blood perfusion. However, these microenvironmental changes trigger chemo-mechanically induced cellular phenotypic transitions whose impact on therapy outcomes is not completely understood. In this work we analyze the effects of mechanical compression on migration and proliferation of glioma cells. We derive a mathematical model of glioma progression focusing on cellular phenotypic plasticity. Our results reveal a trade-off between tumor infiltration and cellular content as a consequence of stress-alleviation approaches. We discuss how these novel findings increase the current understanding of glioma/microenvironment interactions and can contribute to new strategies for improved therapeutic outcomes.

12.
Front Oncol ; 9: 32, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30805303

RESUMO

Metastatic dissemination of cancer cells to distal organs is the major cause of death for patients suffering from the aggressive basal-like breast cancer (BLBC) subtype. Recently, we have shown that interleukin 13 receptor alpha 2 (IL13Rα2) is a critical gene that is overexpressed in a subset of BLBC primary tumors associated with poor distant metastasis-free survival (DMFS) and can promote extravasation and metastasis of breast cancer cells to the lungs. However, the upstream signaling mechanisms that promote aberrant IL13Rα2 expression during tumor progression remain unknown. Driven by our previously published gene expression microarray data derived from a well-characterized cell line model for BLBC progression, we show that both Inhibin ßA (INHBA) and IL13Rα2 genes exhibit similarly higher expression levels in metastatic compared to non-metastatic cells and that overexpression of both genes predicts worse metastasis-free survival of patients with high grade tumors. Activin A, a member of the TGFß superfamily comprising two INHBA subunits, has been shown to play context-depended roles in cancer progression. Here, we demonstrate that INHBA depletion downregulates IL13Rα2 expression in metastatic breast cancer cells, whereas treatment with Activin A in non-metastatic cells increases its expression levels. We also find that Activin A predominantly induces Smad2 phosphorylation and to a lesser extent activates Smad3 and Akt. Interestingly, we also show that Activin A-mediated upregulation of IL13Rα2 is Smad2-dependent since knocking down Smad2 or using the ALK4/ALK5 inhibitors EW-7197 and SB-505124 abolishes this effect. Most importantly, our data indicate that knocking down INHBA levels in breast cancer cells delays primary tumor growth, suppresses migration in vitro and inhibits the formation of lung metastases in vivo. Conclusively, our findings presented here suggest that the development of therapeutic interventions employing small molecule inhibitors against Activin receptors or neutralizing antibodies targeting Activin A ligand, could serve as alternative approaches against breast tumors overexpressing INHBA and/or IL13Rα2.

13.
Sci Rep ; 9(1): 978, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700740

RESUMO

Solid stress is a biomechanical abnormality of the tumor microenvironment that plays a crucial role in tumor progression. When it is applied to cancer cells, solid stress hinders their proliferation rate and promotes cancer cell invasion and metastatic potential. However, the underlying mechanisms of how it is implicated in cancer metastasis is not yet fully understood. Here, we used two pancreatic cancer cell lines and an established in vitro system to study the effect of solid stress-induced signal transduction on pancreatic cancer cell migration as well as the mechanism involved. Our results show that the migratory ability of cells increases as a direct response to solid stress. We also found that Growth Differentiation Factor 15 (GDF15) expression and secretion is strongly upregulated in pancreatic cancer cells in response to mechanical compression. Performing a phosphoprotein screening, we identified that solid stress activates the Akt/CREB1 pathway to transcriptionally regulate GDF15 expression, which eventually promotes pancreatic cancer cell migration. Our results suggest a novel solid stress signal transduction mechanism bringing GDF15 to the centre of pancreatic tumor biology and rendering it a potential target for future anti-metastatic therapeutic innovations.


Assuntos
Movimento Celular , Fator 15 de Diferenciação de Crescimento/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Estresse Fisiológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Humanos , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/farmacologia , Estresse Mecânico , Estresse Fisiológico/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
14.
Front Oncol ; 8: 55, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29594037

RESUMO

Solid tumors are characterized by an abnormal stroma that contributes to the development of biomechanical abnormalities in the tumor microenvironment. In particular, these abnormalities include an increase in matrix stiffness and an accumulation of solid stress in the tumor interior. So far, it is not clearly defined whether matrix stiffness and solid stress are strongly related to each other or they have distinct roles in tumor progression. Moreover, while the effects of stiffness on tumor progression are extensively studied compared to the contribution of solid stress, it is important to ascertain the biological outcomes of both abnormalities in tumorigenesis and metastasis. In this review, we discuss how each of these parameters is evolved during tumor growth and how these parameters are influenced by each other. We further review the effects of matrix stiffness and solid stress on the proliferative and metastatic potential of cancer and stromal cells and summarize the in vitro experimental setups that have been designed to study the individual contribution of these parameters.

15.
Ann Biomed Eng ; 46(5): 657-669, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29470747

RESUMO

Pancreatic fibroblasts are continuously gaining ground as an important component of tumor microenvironment that dynamically interact with cancer cells to promote tumor progression. In addition, these tumor-infiltrated fibroblasts can acquire an activated phenotype and produce excessive amounts of extracellular matrix creating a highly dense stroma, a situation known as desmoplasia. Desmoplasia, along with the uncontrolled proliferation of cancer cells, leads to the development of compressive forces within the tumor, generating the so-called solid stress. Solid stress is previously shown to affect cancer cell proliferation and migration, however there is no pertinent study taking into account the effects of solid stress on fibroblasts and whether these effects contribute to tumor progression. In this work, we applied a defined compressive stress on pancreatic fibroblasts, similar in magnitude to that experienced by cells in native pancreatic tumors. Our results suggest that solid stress stimulates fibroblasts activation and strongly upregulates Growth Differentiation Factor-15 (GDF15) expression. Moreover, co-culture of compression-induced activated fibroblasts with pancreatic cancer cells significantly promotes cancer cell migration, which is inhibited by shRNA-mediated silencing of GDF15 in fibroblasts. Conclusively, our findings highlight the involvement of biophysical factors, such as solid stress, in tumor progression and malignancy revealing a novel role for GDF15.


Assuntos
Movimento Celular , Proliferação de Células , Fibroblastos/metabolismo , Neoplasias Pancreáticas/metabolismo , Estresse Fisiológico , Linhagem Celular Tumoral , Força Compressiva , Fibroblastos/patologia , Fator 15 de Diferenciação de Crescimento/biossíntese , Humanos , Ácido Isetiônico , Proteínas de Neoplasias/biossíntese , Neoplasias Pancreáticas/patologia
16.
J Control Release ; 261: 105-112, 2017 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-28662901

RESUMO

Targeting the rich extracellular matrix of desmoplastic tumors has been successfully shown to normalize collagen and hyaluronan levels and re-engineer intratumoral mechanical forces, improving tumor perfusion and chemotherapy. As far as targeting the abundant cancer-associated fibroblasts (CAFs) in desmoplastic tumors is concerned, while both pharmacologic inhibition of the sonic-hedgehog pathway and genetic depletion of fibroblasts have been employed in pancreatic cancers, the results between the two methods have been contradictory. In this study, we employed vismodegib to inhibit the sonic-hedgehog pathway with the aim to i) elucidate the mechanism of how CAFs depletion improves drug delivery, ii) extent and evaluate the potential use of sonic-hedgehog inhibitors to breast cancers, and iii) investigate whether sonic-hedgehog inhibition improves not only chemotherapy, but also the efficacy of the most commonly used breast cancer nanomedicines, namely Abraxane® and Doxil®. We found that treatment with vismodegib normalizes the tumor microenvironment by reducing the proliferative CAFs and in cases the levels of collagen and hyaluronan. These modulations re-engineered the solid and fluid stresses in the tumors, improving blood vessel functionality. As a result, the delivery and efficacy of chemotherapy was improved in two models of pancreatic cancer. Additionally, vismodegib treatment significantly improved the efficacy of both Abraxane and Doxil in xenograft breast tumors. Our results suggest the use of vismodegib, and sonic hedgehog inhibitors in general, to enhance cancer chemo- and nanotherapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteínas Hedgehog/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Paclitaxel Ligado a Albumina/administração & dosagem , Paclitaxel Ligado a Albumina/farmacologia , Anilidas/administração & dosagem , Anilidas/farmacologia , Animais , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/patologia , Proteínas Hedgehog/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Nanopartículas , Neoplasias Pancreáticas/patologia , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacologia , Piridinas/administração & dosagem , Piridinas/farmacologia , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...