Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202401026, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837596

RESUMO

It is unclear, which role space charge layers (SCLs) play within an all-solid-state battery during operation with high current densities, and to which extent they form. Herein, we use a solid electrolyte with a known SCL formation and investigate it in a symmetric cell under non-blocking conditions with Li metal electrodes. Since the used LICGC™ electrolyte is known for its instability against lithium, it is protected from rapid degradation by nanometer-thin layers of TiOx deployed by atomic layer deposition. Close attention is given to the interfacial properties, as now additional Li+ can traverse through the interface depending on the applied bias potential. The interlayer's impedance response shows efficient lithium-ion conduction for low bias potentials and a diffusion-limiting effect towards high positive and negative potentials. SCLs grow up to a thickness of 5.1 µm. Additionally, estimating the apparent rate constant of the charge transfer across the interface indicates that the potentials where kinetics are hindered coincide with the widest SCLs. In conclusion, the investigation under higher steady-state currents was only possible because of the improved stability due to the interlayer. No chemo-physical failure could be observed after 800+ hours of cycling. However, SEM study shows a new phase at the interface.

2.
ChemSusChem ; : e202400272, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38894598

RESUMO

The widespread use of high-capacity Ni-rich layered oxides such as LiNi0.8Mn0.1Co0.1O2 (NMC811), in lithium-ion batteries is hindered due to practical capacity loss and reduced working voltage during operation. Aging leads to defective NMC811 particles, affecting electrochemical performance. Surface modification offers a promising approach to improve cycle life. Here, we introduce an amorphous lithium titanate (LTO) coating via atomic layer deposition (ALD), not only covering NMC811 surfaces but also penetrating cavities and grain boundaries. As NMC811 electrodes suffer from low structural stability during charge and discharge, We combined electrochemistry, operando X-ray diffraction (XRD), and dilatometry to understand structural changes and the coating protective effects. XRD reveals significant structural evolution during delithiation for uncoated NMC811. The highly reversible phase change in coated NMC811 highlights enhanced bulk structure stability. The LTO coating retards NMC811 degradation, boosting capacity retention from 86% to 93% after 140 cycles. This study underscores the importance of grain boundary engineering for Ni-rich layered oxide electrode stability and the interplay of chemical and mechanical factors in battery aging.

3.
ACS Appl Mater Interfaces ; 16(22): 28683-28693, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38768951

RESUMO

Ni-rich layered oxides LiNi1-x-yMnxCoyO2 (NMC811, x = 0.1 and y = 0.1) are considered promising cathode materials in lithium-ion batteries (LiBs) due to their high energy density. However, those suffer a severe capacity loss upon cycling at high delithiated states. The loss of performance over time can be retarded by Zr doping. Herein, a small amount of Zr is added to NMC811 material via two alternative pathways: during the formation of the transition metal (TM) hydroxide precursor at the co-precipitation step (0.1%-Zr-cp) and during the lithiation at the solid-state synthesis step (0.1%-Zr-ss). In this work, the crystallographic Zr uptake in both 0.1%-Zr-ss and 0.1%-Zr-cp is determined and quantified through synchrotron X-ray diffraction and X-ray absorption spectroscopy. We prove that the inclusion of Zr in the TM site for 0.1%-Zr-cp leads to an improvement of both specific capacity (156 vs 149 mAh/g) and capacity retention (85 vs 82%) upon 100 cycles compared to 0.1%-Zr-ss where the Zr does not diffuse into the active material and forms only an extra phase separated from the NMC811 particles.

4.
Small ; : e2402190, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38794869

RESUMO

SnOx has received great attention as an electrocatalyst for CO2 reduction reaction (CO2RR), however; it still suffers from low activity. Moreover, the atomic-level SnOx structure and the nature of the active sites are still ambiguous due to the dynamism of surface structure and difficulty in structure characterization under electrochemical conditions. Herein, CO2RR performance is enhanced by supporting SnO2 nanoparticles on two common supports, vulcan carbon and TiO2. Then, electrolysis of CO2 at various temperatures in a neutral electrolyte reveals that the application window for this catalyst is between 12 and 30 °C. Furthermore, this study introduces a machine learning interatomic potential method for the atomistic simulation to investigate SnO2 reduction and establish a correlation between SnOx structures and their CO2RR performance. In addition, selectivity is analyzed computationally with density functional theory simulations to identify the key differences between the binding energies of *H and *CO2 -, where both are correlated with the presence of oxygen on the nanoparticle surface. This study offers in-depth insights into the rational design and application of SnOx-based electrocatalysts for CO2RR.

5.
ACS Appl Mater Interfaces ; 16(6): 6948-6957, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305160

RESUMO

Electrocatalytic hydrogenation (ECH) approaches under ambient temperature and pressure offer significant potential advantages over thermal hydrogenation processes but require highly active and efficient hydrogenation electrocatalysts. The performance of such hydrogenation electrocatalysts strongly depends not only on the active phase but also on the architecture and surface chemistry of the support material. Herein, Pd nanoparticles supported on a nickel metal-organic framework (MOF), Ni-MOF-74, are prepared, and their activity toward the ECH of benzaldehyde (BZH) in a 3 M acetate (pH 5.2) aqueous electrolyte is explored. An outstanding ECH rate up to 283 µmol cm-2 h-1 with a Faradaic efficiency (FE) of 76% is reached. Besides, higher FEs of up to 96% are achieved using a step-function voltage. Materials Studio and density functional theory calculations show these outstanding performances to be associated with the Ni-MOF support that promotes H-bond formation, facilitates water desorption, and induces favorable tilted BZH adsorption on the surface of the Pd nanoparticles. In this configuration, BZH is bonded to the Pd surface by the carbonyl group rather than through the aromatic ring, thus reducing the energy barriers of the elemental reaction steps and increasing the overall reaction efficiency.

6.
ACS Appl Mater Interfaces ; 16(2): 2216-2230, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170822

RESUMO

The development of LiNi0.8Mn0.1Co0.1O2 (NMC811) as a cathode material for high-energy-density lithium-ion batteries (LIBs) intends to address the driving limitations of electric vehicles. However, the commercialization of this technology has been hindered by poor cycling stability at high cutoff voltages. The potential instability and drastic capacity fade stem from irreversible parasitic side reactions at the electrode-electrolyte interface. To address these issues, a stable nanoscale lithium fluoride (LiF) coating is deposited on the NMC811 electrode via atomic layer deposition. The nanoscale LiF coating diminishes the direct contact between NMC811 and the electrolyte, suppressing the detrimental parasitic reactions. LiF-NMC811 delivers cycling stability superior to uncoated NMC811 with high cutoff voltage for half-cell (3.0-4.6 V vs Li/Li+) and full-cell (2.8-4.5 V vs graphite) configurations. The structural, morphological, and chemical analyses of the electrodes after cycling show that capacity decline fundamentally arises from the electrode-electrolyte interface growth, irreversible phase transformation, transition metal dissolution and crossover, and particle cracking. Overall, this work demonstrates that LiF is an effective electrode coating for high-voltage cycling without compromising rate performance, even at high discharge rates. The findings of this work highlight the need to stabilize the electrode-electrolyte interface to fully utilize the high-capacity performance of NMC811.

7.
ChemSusChem ; 17(8): e202301005, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38126627

RESUMO

The conversion of biomass and natural wastes into carbon-based materials for various applications such as catalysts and energy-related materials is a fascinating and sustainable approach emerged during recent years. Precursor nature and characteristics are complex, hence, their effect on the properties of resulting materials is still unclear. In this work, we have investigated the effect of different precursors and pyrolysis temperature on the properties of produced carbon materials and their potential application as negative electrode materials in Li-ion batteries. Three biomasses, lignocellulosic brewery spent grain from a local brewery, catechol-rich lignin and tannins, were selected for investigations. We show that such end-product carbon characteristic as functional and elemental composition, porosity, specific surface area, defectiveness level, and morphology strictly depend on the precursor composition, chemical structure, and pyrolysis temperature. The electrochemical characteristics of produced carbon materials correlate with the characteristics of the produced materials. A higher pyrolysis temperature is shown to be favourable for production of carbon material for the Li-ion battery application in terms of both specific capacity and long-term cycling stability.

8.
RSC Adv ; 13(37): 25817-25827, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37655361

RESUMO

Composites comprising vanadium-pentoxide (V2O5) and single-walled carbon nanotubes (SWCNTs) are promising components for emerging applications in optoelectronics, solar cells, chemical and electrochemical sensors, etc. We propose a novel, simple, and facile approach for SWCNT covering with V2O5 by spin coating under ambient conditions. With the hydrolysis-polycondensation of the precursor (vanadyl triisopropoxide) directly on the surface of SWCNTs, the nm-thick layer of oxide is amorphous with a work function of 4.8 eV. The material recrystallizes after thermal treatment at 600 °C, achieving the work function of 5.8 eV. The key advantages of the method are that the obtained coating is uniform with a tunable thickness and does not require vacuuming or heating during processing. We demonstrate the groundbreaking results for two V2O5/SWCNT applications: transparent electrode and cathode for Li-ion batteries. As a transparent electrode, the composite shows stable sheet resistance of 160 Ω sq-1 at a 90% transmittance (550 nm) - the best performance reported for SWCNTs doped by metal oxides. As a cathode material, the obtained specific capacity (330 mA h g-1) is the highest among all the other V2O5/SWCNT cathodes reported so far. This approach opens new horizons for the creation of the next generation of metal oxide composites for various applications, including optoelectronics and electrochemistry.

9.
ACS Appl Energy Mater ; 6(1): 267-277, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36644114

RESUMO

The mixture of CO and H2, known as syngas, is a building block for many substantial chemicals and fuels. Electrochemical reduction of CO2 and H2O to syngas would be a promising alternative approach for its synthesis due to negative carbon emission footprint when using renewable energy to power the reaction. Herein, we present temperature-controlled syngas production by electrochemical CO2 and H2O reduction on a cobalt tetraphenylporphyrin/multiwalled carbon nanotube (CoTPP/MWCNT) composite in a flow cell in the temperature range of 20-50 °C. The experimental results show that for all the applied potentials the ratio of H2/CO increases with increasing temperature. Interestingly, at -0.6 V RHE and 40 °C, the H2/CO ratio reaches a value of 1.2 which is essential for the synthesis of oxo-alcohols. In addition, at -1.0 V RHE and 20 °C, the composite shows very high selectivity toward CO formation, reaching a Faradaic efficiency of ca. 98%. This high selectivity of CO formation is investigated by density functional theory modeling which underlines that the potential-induced oxidation states of the CoTPP catalyst play a vital role in the high selectivity of CO production. Furthermore, the stability of the formed intermediate species is evaluated in terms of the pKa value for further reactions. These experimental and theoretical findings would provide an alternative way for syngas production and help us to understand the mechanism of molecular catalysts in dynamic conditions.

10.
Sci Adv ; 9(3): eadd6978, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36652519

RESUMO

Hydrogen evolution reaction (HER), as an effective method to produce green hydrogen, is greatly impeded by inefficient mass transfer, i.e., bubble adhesion on electrode, bubble dispersion in the vicinity of electrode, and poor dissolved H2 diffusion, which results in blocked electrocatalytic area and large H2 concentration overpotential. Here, we report a superaerophilic/superaerophobic (SAL/SAB) cooperative electrode to efficiently promote bubble transfer by asymmetric Laplace pressure and accelerate dissolved H2 diffusion through reducing diffusion distance. Benefiting from the enhanced mass transfer, the overpotential for the SAL/SAB cooperative electrode at -10 mA cm-2 is only -19 mV, compared to -61 mV on the flat Pt electrode. By optimizing H2SO4 concentration, the SAL/SAB cooperative electrode can achieve ultrahigh current density (-1867 mA cm-2) at an overpotential of -500 mV. We can envision that the SAL/SAB cooperative strategy is an effective method to improve HER efficiency and stimulate the understanding of various gas-involved processes.

11.
ACS Appl Mater Interfaces ; 14(16): 18866-18876, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35418224

RESUMO

Stretchable and flexible electronics has attracted broad attention over the last years. Nanocomposites based on elastomers and carbon nanotubes are a promising material for soft electronic applications. Despite the fact that single-walled carbon nanotube (SWCNT) based nanocomposites often demonstrate superior properties, the vast majority of the studies were devoted to those based on multiwalled carbon nanotubes (MWCNTs) mainly because of their higher availability and easier processing procedures. Moreover, high weight concentrations of MWCNTs are often required for high performance of the nanocomposites in electronic applications. Inspired by the recent drop in the SWCNT price, we have focused on fabrication of elastic nanocomposites with very low concentrations of SWCNTs to reduce the cost of nanocomposites further. In this work, we use a fast method of coagulation (antisolvent) precipitation to fabricate elastic composites based on thermoplastic polyurethane (TPU) and SWCNTs with a homogeneous distribution of SWCNTs in bulk TPU. Applicability of the approach is confirmed by extra low percolation threshold of 0.006 wt % and, as a consequence, by the state-of-the-art performance of fabricated elastic nanocomposites at very low SWCNT concentrations for strain sensing (gauge factor of 82 at 0.05 wt %) and EMI shielding (efficiency of 30 dB mm-1 at 0.01 wt %).

12.
Sci Rep ; 12(1): 137, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997066

RESUMO

This paper presents the electrochemical performance and characterization of nano Si electrodes coated with titanicone (TiGL) as an anode for Li ion batteries (LIBs). Atomic layer deposition (ALD) of the metal combined with the molecular layer deposition (MLD) of the organic precursor is used to prepare coated electrodes at different temperatures with improved performance compared to the uncoated Si electrode. Coated electrodes prepared at 150 °C deliver the highest capacity and best current response of 1800 mAh g-1 at 0.1 C and 150 mAh g-1 at 20 C. This represented a substantial improvement compared to the Si baseline which delivers a capacity of 1100 mAh g-1 at 0.1 C but fails to deliver capacity at 20 C. Moreover, the optimized coated electrode shows an outstanding capacity of 1200 mAh g-1 at 1 C for 350 cycles with a capacity retention of 93%. The improved discharge capacity, electrode efficiencies, rate capability and electrochemical stability for the Si-based electrode presented in this manuscript are directly correlated to the optimized TiGL coating layer deposited by the ALD/MLD processes, which enhances lithium kinetics and electronic conductivity as demonstrated by equivalent circuit analysis of low frequency impedance data and conductivity measurements. The coating strategy also stabilizes SEI film formation with better Coulombic efficiencies (CE) and improves long cycling stability by reducing capacity lost.

13.
ACS Appl Mater Interfaces ; 13(36): 42773-42790, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34491036

RESUMO

Nickel-rich layered oxides, such as LiNi0.6Co0.2Mn0.2O2 (NMC622), are high-capacity electrode materials for lithium-ion batteries. However, this material faces issues, such as poor durability at high cut-off voltages (>4.4 V vs Li/Li+), which mainly originate from an unstable electrode-electrolyte interface. To reduce the side reactions at the interfacial zone and increase the structural stability of the NMC622 materials, nanoscale (<5 nm) coatings of TiOx (TO) and LixTiyOz (LTO) were deposited over NMC622 composite electrodes using atomic layer deposition. It was found that these coatings provided a protective surface and also reinforced the electrode structure. Under high-voltage range (3.0-4.6 V) cycling, the coatings enhance the NMC electrochemical behavior, enabling longer cycle life and higher capacity. Cyclic voltammetry, X-ray photoelectron spectroscopy, and X-ray diffraction analyses of the coated NMC electrodes suggest that the enhanced electrochemical performance originates from reduced side reactions. In situ dilatometry analysis shows reversible volume change for NMC-LTO during the cycling. It revealed that the dilation behavior of the electrode, resulting in crack formation and consequent particle degradation, is significantly suppressed for the coated sample. The ability of the coatings to mitigate the electrode degradation mechanisms, illustrated in this report, provides insight into a method to enhance the performance of Ni-rich positive electrode materials under high-voltage ranges.

14.
ChemSusChem ; 14(11): 2434-2444, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33871177

RESUMO

The recycling of used Li-ion batteries is important as the consumption of batteries is increasing every year. However, the recycling of electrode materials is tedious and energy intensive with current methods, and part of the material is lost in the process. In this study, an alternative recycling method is presented to minimize the number of steps needed in the positive electrode recovery process. The electrochemical performance of aged and re-lithiated Mg-Ti-doped LiCoO2 and stoichiometric LiCoO2 was investigated and compared. The results showed that after re-lithiation the structure of original LiCoO2 was restored, the capacity of an aged LiCoO2 reverted close to the capacity of a fresh LiCoO2 , and the material could thus be recovered. The re-lithiated Mg-Ti-doped LiCoO2 provided rate capability properties only slightly declined from the rate capability of a fresh material and showed promising cyclability in half-cells.

15.
Chemistry ; 27(34): 8799-8803, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33780076

RESUMO

Two new atomic/molecular layer deposition processes for depositing crystalline metal-organic thin films, built from 1,4-benzenedisulfonate (BDS) as the organic linker and Cu or Li as the metal node, are reported. The processes yield in-situ crystalline but hydrated Cu-BDS and Li-BDS films; in the former case, the crystal structure is of a previously known metal-organic-framework-like structure, while in the latter case not known from previous studies. Both hydrated materials can be readily dried to obtain the crystalline unhydrated phases. The stability and the ionic conductivity of the unhydrated Li-BDS films were characterized to assess their applicability as a thin film solid polymer Li-ion conductor.

16.
ACS Sustain Chem Eng ; 8(23): 8549-8561, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33282568

RESUMO

The growing adoption of biobased materials for electronic, energy conversion, and storage devices has relied on high-grade or refined cellulosic compositions. Herein, lignocellulose nanofibrils (LCNF), obtained from simple mechanical fibrillation of wood, are proposed as a source of continuous carbon microfibers obtained by wet spinning followed by single-step carbonization at 900 °C. The high lignin content of LCNF (∼28% based on dry mass), similar to that of the original wood, allowed the synthesis of carbon microfibers with a high carbon yield (29%) and electrical conductivity (66 S cm-1). The incorporation of anionic cellulose nanofibrils (TOCNF) enhanced the spinnability and the porous morphology of the carbon microfibers, making them suitable platforms for electrochemical double layer capacitance (EDLC). The increased loading of LCNF in the spinning dope resulted in carbon microfibers of enhanced carbon yield and conductivity. Meanwhile, TOCNF influenced the pore evolution and specific surface area after carbonization, which significantly improved the electrochemical double layer capacitance. When the carbon microfibers were directly applied as fiber-shaped supercapacitors (25 F cm-3), they displayed a remarkably long-term electrochemical stability (>93% of the initial capacitance after 10 000 cycles). Solid-state symmetric fiber supercapacitors were assembled using a PVA/H2SO4 gel electrolyte and resulted in an energy and power density of 0.25 mW h cm-3 and 65.1 mW cm-3, respectively. Overall, the results indicate a green and facile route to convert wood into carbon microfibers suitable for integration in wearables and energy storage devices and for potential applications in the field of bioelectronics.

17.
Int J Hydrogen Energy ; 45(53): 28217-28239, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32863546

RESUMO

Energy enthusiasts in developed countries explore sustainable and efficient pathways for accomplishing zero carbon footprint through the H2 economy. The major objective of the H2 economy review series is to bring out the status, major issues, and opportunities associated with the key components such as H2 production, storage, transportation, distribution, and applications in various energy sectors. Specifically, Part I discussed H2 production methods including the futuristic ones such as photoelectrochemical for small, medium, and large-scale applications, while Part II dealt with the challenges and developments in H2 storage, transportation, and distribution with national and international initiatives. Part III of the H2 economy review discusses the developments and challenges in the areas of H2 application in chemical/metallurgical industries, combustion, and fuel cells. Currently, the majority of H2 is being utilized by a few chemical industries with >60% in the oil refineries sector, by producing grey H2 by steam methane reforming on a large scale. In addition, the review also presents the challenges in various technologies for establishing greener and sustainable H2 society.

18.
Sci Rep ; 10(1): 5589, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221406

RESUMO

Carbon nanotubes can be utilized in several ways to enhance the performance of silicon-based anodes. In the present work, thermally carbonized mesoporous silicon (TCPSi) microparticles and single-walled carbon nanotubes (CNTs) are conjugated to create a hybrid material that performs as the Li-ion battery anode better than the physical mixture of TCPSi and CNTs. It is found out that the way the conjugation is done has an essential role in the performance of the anode. The conjugation should be made between negatively charged TCPSi and positively charged CNTs. Based on the electrochemical experiments it is concluded that the positive charges, i.e., excess amine groups of the hybrid material interfere with the diffusion of the lithium cations and thus they should be removed from the anode. Through the saturation of the excess positive amine groups on the CNTs with succinic anhydride, the performance of the hybrid material is even further enhanced.

19.
J Colloid Interface Sci ; 556: 180-192, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31445447

RESUMO

Core-shell nanoparticles represent a class of materials that exhibit a variety of properties. By rationally tuning the cores and the shells in such nanoparticles (NPs), a range of materials with tailorable properties can be produced which are of interest for a wide variety of applications. Herein, experimental and theoretical approaches have been combined to show the structural transformation of NPs resulting to the formation of either NiFexCy encapsulated in ultra-thin graphene layer (NiFe@UTG) or Ni3C/FexCy@FeOx NPs with the universal one-step pulse laser ablation in liquid (PLAL) method. Analysis suggests that carbon in Ni3C is the source for the carbon shell formation, whereas the final carbon-shell thickness in the NPs originates from the difference between Ni3C and FexCy phases stability at room temperature. The ternary Ni-Fe-C phase diagram calculations reveal the competition between carbon solubility in the studied metals (Ni and Fe) and their tendency toward oxidation as the key properties to produce controlled core-shell NP materials. As an application example, the electrocatalytic hydrogen evolution current on the different NPs is measured. The electrochemical analysis of the NPs reveals that NiFe@UTG has the best performance amongst the NPs in this study in both alkaline and acidic media.

20.
Chemistry ; 25(53): 12288-12293, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31336013

RESUMO

HNO3 -oxidized carbon nanotubes catalyze oxidative dehydrogenative (ODH) carbon-carbon bond formation between electron-rich (hetero)aryls with O2 as a terminal oxidant. The recyclable carbocatalytic method provides a convenient and an operationally easy synthetic protocol for accessing various benzofused homodimers, biaryls, triphenylenes, and related benzofused heteroaryls that are highly useful frameworks for material chemistry applications. Carbonyls/quinones are the catalytically active site of the carbocatalyst as indicated by model compounds and titration experiments. Further investigations of the reaction mechanism with a combination of experimental and DFT methods support the competing nature of acid-catalyzed and radical cationic ODHs, and indicate that both mechanisms operate with the current material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...