Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Indian J Microbiol ; 50(2): 156-64, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23100822

RESUMO

A high exhaust reactive dye, Green HE4B (GHE4B) was 98% degraded in nutrient medium by Pseudomonas desmolyticum NCIM 2112 (pd2112) within 72 h at static condition. Decolorization time in synthetic 10 g/l molasses. Addition of 5 g/l peptone to NaCl medium had reduced decolorization time from 108 to 72 h. Beef extract do not contribute more to the inducing effect of peptone, however it is a good co-substrate in sucrose or urea containing NaCl medium. Intracellular lignin peroxidase (Lip), laccase and tyrosinase activities were induced by 150, 355 and 212%, respectively till maximum dye removal took place. Aminopyrine N-demethylase (AND) and dichlorophenol indophenol reductase (DCIP-reductase) activities in pd2112 were induced by 130 and 20%, respectively at 72 h of incubation during GHE4B decolorization. By high performance liquid chromatography (HPLC) analysis, 4-hydroxybenzene sulfonic acid and 4-amino, 6-hydroxynaphthalene 2-sulfonic acids were identified as metabolites formed during 24-72 h incubation. Fourier transform infrared spectroscopy (FTIR) analysis supports the formation of these aromatic amines. pd2112, aerobically degraded GHE4B metabolites (formed at static condition) showing stationary phase of 6 days. There was no germination inhibition of Sorghum bicolor and Triticum aestivum by GHE4B metabolites at 3,000 ppm concentration however untreated dye showed germination inhibition at the same concentration. GHE4B metabolites did not show any microbial toxicity at 10,000 ppm concentration.

2.
Chemosphere ; 68(2): 394-400, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17292452

RESUMO

Saccharomyces cerevisiae MTCC 463 decolourizes toxic azo dye, methyl red by degradation process. Methyl red (100mgl(-1)) is degraded completely within 16min in plain distilled water under static anoxic condition, at the room temperature. Effect of physicochemical parameters (pH of medium, composition of medium, concentration of cells, concentration of dye, temperature and agitation) on methyl red decolourization focused the optimal condition required for decolourization. Biodegradation (fate of metabolism) of methyl red in plain distilled water was found to be pH dependent. Cells of Saccharomyces cerevisiae could degrade methyl red efficiently up to 10 cycles in plain distilled water. Analysis of samples extracted with ethyl acetate from decolourized culture flasks in plain distilled water (pH 6.5) and at pH 9 using UV-VIS, TLC, HPLC and FTIR confirm biodegradation of methyl red into several different metabolites. A study of the enzymes responsible for the biodegradation of methyl red in the control and cells obtained after decolourization in plain distilled water (pH 6.5) and at pH 9 showed different levels of the activities of laccase, lignin peroxidase, NADH-DCIP reductase, azoreductase, tyrosinase and aminopyrine N-demethylase. A significant increase in the activities of lignin peroxidase and NADH-DCIP reductase was observed in the cells obtained after decolourization in plain distilled water (pH 6.5), however cells obtained at pH 9 shows increased activities of azoreductase, tyrosinase, lignin peroxidase and NADH-DCIP reductase. High efficiency to decolourize methyl red in plain distilled water and low requirement of environmental conditions enables this yeast to be used in biological treatment of industrial effluent containing azo dye, methyl red.


Assuntos
Compostos Azo/metabolismo , Corantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminopirina N-Desmetilase/metabolismo , Cromatografia Líquida de Alta Pressão , Concentração de Íons de Hidrogênio , Lacase/metabolismo , Monofenol Mono-Oxigenase/metabolismo , NADH NADPH Oxirredutases/metabolismo , Nitrorredutases , Peroxidases/metabolismo , Quinona Redutases/metabolismo , Saccharomyces cerevisiae/enzimologia , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Bioresour Technol ; 98(18): 3638-42, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17204422

RESUMO

The present study dealt with the decolorization and degradation of textile dye Reactive blue-25 (0.1gl(-1)) by mycelium of Aspergillus ochraceus NCIM-1146. Spectrophotometric and visual examinations showed that the decolorization was through fungal adsorption, followed by degradation. Shaking condition was found to be better for complete and faster adsorption (7h) and decolorization (20 days) of dye Reactive blue-25 (100mgl(-1)) as compared to static condition. Presence of glucose in medium showed faster adsorption (4h) and decolorization of dye from bound (7 days) mycelium. FTIR and GCMS analysis study revealed biodegradation of Reactive blue-25 into two metabolites phthalimide and di-isobutyl phthalate.


Assuntos
Aspergillus ochraceus/metabolismo , Corantes/metabolismo , Aspergillus ochraceus/classificação , Biodegradação Ambiental , Meios de Cultura , Concentração de Íons de Hidrogênio , Micologia/métodos , Espectrofotometria Atômica , Temperatura
4.
Bioresour Technol ; 98(7): 1405-10, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-16822666

RESUMO

Pseudomonas desmolyticum NCIM 2112 was able to degrade a diazo dye Direct Blue-6 (100 mg l(-1)) completely within 72 h of incubation with 88.95% reduction in COD in static anoxic condition. Induction in the activity of oxidative enzymes (LiP, laccase) and tyrosinase while decolorization in the batch culture represents their role in degradation. Dye also induced the activity of aminopyrine N-demethylase, one of the enzyme of mixed function oxidase system. The biodegradation was monitored by UV-Vis, IR spectroscopy and HPLC. The final products, 4-amino naphthalene and amino naphthalene sulfonic acid were characterized by GC-mass spectroscopy.


Assuntos
Compostos Azo/metabolismo , Pseudomonas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Análise de Variância , Biodegradação Ambiental , Cromatografia Líquida de Alta Pressão , Lacase/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Peroxidases/metabolismo , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...