Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Reprod ; 104(5): 1162-1180, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33624745

RESUMO

Atrazine (ATZ) is an extensively used herbicide and ubiquitous environmental contaminant. ATZ and its metabolite, diaminochlorotriazine (DACT), cause several cellular and functional alterations in spermatozoa. We aimed to examine the effect of ATZ/DACT on spermatozoon DNA integrity, fertilization competence, embryonic development, and transcriptome profile of in vitro-produced embryos derived from fertilization with pre-exposed sperm. Bovine spermatozoa exposed to ATZ (0.1 or 1 µM) or DACT (1 or 10 µM) during in vitro capacitation were used for in vitro fertilization of untreated oocytes. Cleavage and blastocyst-formation rates were evaluated 42 h and 7 days postfertilization, respectively. The association between DNA fragmentation and apoptosis (annexin V kit) was determined. Fertilization competence of annexin-positive (AV+) and annexin-negative (AV-) spermatozoa was examined. Microarray analysis was performed for 7-day blastocysts. Intracytoplasmic sperm injection was performed with control (AV+, AV-) and DACT (AV+, AV-) spermatozoa. Cleavage rates did not differ between groups and blastocyst formation tended to be higher for AV- vs. AV+ in both control and DACT groups, suggesting that acrosome reaction, rather than DNA fragmentation, underlies the reduced cleavage. Transcriptomic analysis revealed 139 and 230 differentially expressed genes in blastocysts derived from ATZ- and DACT-exposed spermatozoa, respectively, relative to controls. Proteomic analysis shown differential expression of proteins in ATZ- or DACT-treated spermatozoa, in particular proteins related to cellular processes and biological pathways. Therefore, we assume that factors delivered by the spermatozoa, regardless of DNA fragmentation, are also involved. Overall, the current study reveals a deleterious carryover effect of ATZ/DACT from the spermatozoa to the developing embryo.


Assuntos
Atrazina/efeitos adversos , Bovinos/fisiologia , Herbicidas/efeitos adversos , Espermatozoides/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Masculino , Espermatozoides/metabolismo
3.
Toxicology ; 421: 59-73, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31059758

RESUMO

Mono(2-ethylhexyl) phthalate (MEHP), the main di(2-ethylhexyl) phthalate (DEHP) metabolite, is a known reproductive toxicant. Residual levels of 20 nM MEHP have been found in follicular fluid aspirated from IVF-treated women and DEHP-treated animals. The current study examined whether these residual MEHP levels have any effect on the follicle-enclosed oocyte or developing embryo. Bovine oocytes were matured with or without 20 nM MEHP for 22 h. Microarray analysis was performed for both mature oocytes and 7-day blastocysts. A proteomic analysis was performed on mature oocytes (n = 200/group) to reveal a possible direct effect on the oocyte proteomic profile. Transcriptome analysis revealed MEHP-induced alterations in the expression of 456 and 290 genes in oocytes and blastocysts, respectively. The differentially expressed genes are known to be involved in various biological pathways, such as transcription process, cytoskeleton regulation and metabolic pathway. Among these, the expression of 9 genes was impaired in both oocytes exposed to MEHP (i.e., direct effect) and blastocysts developed from those oocytes (i.e., carryover effect). In addition, 191 proteins were found to be affected by MEHP in mature oocytes (Data are available via ProteomeXchange with identifier PXD012092). The study explores, for the first time, the risk associated with exposing oocytes to low concentration (i.e., environmentally relevant concentration) of MEHP to the maternal transcripts. Although it was the oocytes that were exposed to MEHP, alterations carried over to the blastocyst stage, following embryonic genome activation, implying that these embryos are of low quality.


Assuntos
Blastocisto/efeitos dos fármacos , Dietilexilftalato/análogos & derivados , Oócitos/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Blastocisto/metabolismo , Bovinos , Células Cultivadas , Dietilexilftalato/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Proteômica
4.
Toxicology ; 377: 38-48, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27989758

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP) and its metabolite, mono-(2-ethylhexyl) phthalate (MEHP), are reproductive toxicants. However, disruptive effects of MEHP at low concentrations on the oocyte and developing blastocyst are unknown. Previously, we detected low levels of MEHP in follicular fluid aspirated from DEHP-treated cows associated with reduced estradiol levels. Moreover, the MEHP concentrations found were similar to those reported for follicular fluid aspirated from women who have undergone IVF cycles. In the current study, we used an in vitro embryo production model to examine the effect of MEHP at low levels on oocyte developmental competence. We set up several experiments to mimic the follicular fluid content, i.e., low MEHP level and low estradiol. For all experiments, cumulus oocyte complexes (COCs) were aspirated from bovine ovaries, then matured in vitro in standard oocyte maturation medium (OMM) supplemented with: MEHP at a range levels (20-1000nM) or with estradiol at a range levels (0-2000ng/ml). Then, oocytes were fertilized and cultured for an additional 7days to allow blastocyst development. Findings revealed that MEHP at low levels impairs oocyte developmental competence in a dose-dependent manner (P<0.05) and that estradiol by itself does not impair it. Accordingly, in another set of experiments, COCs were matured in vitro with MEHP at two choosen concentrations (20 or 1000nM) with or without estradiol, fertilized and cultured for 7days. Samples of mature oocytes and their derived blastocysts were subjected to quantitative real-time PCR to examine the profiles of selected genes (CYC1, MT-CO1, ATP5B, POU5F1, SOX2 and DNMT3b). Maturation of COCs with MEHP (20 or 1000nM) affected gene expression in the mature oocyte. Maturation of COCs with MEHP (20 or 1000nM) in the absence of estradiol reduced oocyte developmental competence (P<0.05). A differential carryover effect on transcript abundance was recorded in blastocysts developed from MEHP-treated oocytes. In the presence of estradiol, increased expression was recorded for CYC1, ATP5B, SOX2 and DNMT3b. In the absence of estradiol, decreased expression was recorded, with a significant effect for 1000nM MEHP (P<0.05). Taken together, the findings suggest that low levels of phthalate must be taken into consideration in risk assessments.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Ácidos Ftálicos/toxicidade , Animais , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Bovinos , Células Cultivadas , Relação Dose-Resposta a Droga , Desenvolvimento Embrionário/fisiologia , Estradiol/farmacologia , Feminino , Oócitos/metabolismo , Ácidos Ftálicos/química
5.
Zygote ; 24(1): 70-82, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25532584

RESUMO

We examined the association between progressive motility of spermatozoa and in vitro fertilization (IVF) competence of bovine ejaculates. Fresh semen was evaluated using a computerized sperm quality analyzer for bulls using progressive motility as the primary parameter. Ejaculates with high progressive motility (HPM; >81%) were compared with those with low progressive motility (LPM; 0.05). Examination of sperm morphology revealed a higher proportion of spermatozoa with abnormal morphology (P < 0.01) in LPM versus HPM ejaculates, the predominant abnormal feature being a bent tail (P < 0.05). Sperm viability, acrosome integrity and DNA fragmentation did not differ between HPM and LPM samples. Mitochondrial membrane potential was higher (P < 0.01) in HPM versus LPM semen. Zinc concentrations in the seminal plasma correlated with progressive motility (R2 = 0.463, P = 0.03). In addition, representative ejaculates from HPM and LPM groups were cryopreserved in straws and used for IVF. The proportions of embryos cleaved to 2- and 4-cell stages (88.1 ± 1.1 versus 80.5 ± 1.7, P = 0.001) and developed to blastocysts (33.5 ± 1.6 versus 23.5 ± 2.2, P = 0.026) were higher for HPM than LPM semen. The total cell number of embryos and blastocyst apoptotic index did not differ between groups. Although sperm progressive motility is associated with IVF competence, further examination is required to determine whether progressive motility can serve as a predictor of semen fertilization capacity in vivo.


Assuntos
Análise do Sêmen/métodos , Sêmen/fisiologia , Motilidade dos Espermatozoides/fisiologia , Animais , Blastocisto/fisiologia , Bovinos , Criopreservação , Feminino , Fertilização in vitro , Masculino , Espermatozoides/patologia
6.
Reprod Toxicol ; 53: 141-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25900598

RESUMO

Phthalates are known reproductive toxicants, but their intracellular disruptive effects on oocyte maturation competence are less known. We studied the potential risk associated with acute exposure of oocytes to mono(2-ethylhexyl)phthalate (MEHP). First, bovine oocytes were matured in vitro with or without 50 µM MEHP and examined for mitochondrial features associated with DNA fragmentation. MEHP increased reactive oxygen species levels and reduced the proportion of highly polarized mitochondria along with alterations in genes associated with mitochondrial oxidative phosphorylation (CYC1, MT-CO1 and ATP5B). In a second set of experiments, we associated the effects of MEHP on meiotic progression with those on cytoplasmic maturation. MEHP impaired reorganization of cytoplasmic organelles in matured oocytes reflected by reductions in category I mitochondria, type III cortical granules and class I endoplasmic reticulum. These alterations are associated with the previously reported reduced developmental competence of MEHP-treated bovine oocytes, and reveal the risk associated with acute exposure.


Assuntos
Dietilexilftalato/análogos & derivados , Oócitos/efeitos dos fármacos , Animais , Bovinos , Diferenciação Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Fragmentação do DNA , Dietilexilftalato/toxicidade , Feminino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Reprod Fertil Dev ; 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25891636

RESUMO

Subclinical chronic mastitis was induced to examine the effects on oocyte developmental competence. Uninfected Holstein cows were intramammary administrated with serial (every 48h for 20 days) low doses of toxin of Staphylococcus aureus origin (Gram-positive; G+), endotoxin of Escherichia coli origin (Gram-negative; G-) or sterile saline (control). Follicular fluid of toxin- and saline-treated cows was aspirated from preovulatory follicles and used as maturation medium. Oocytes harvested from ovaries collected at the abattoir were matured and then fertilised and cultured for 8 days. The percentage of oocytes undergoing nuclear maturation, determined by meiotic nuclear stages, did not differ between groups. Cytoplasmic maturation, determined by cortical granule distribution, was affected by both toxins (PPPPTGS2) mRNA increased, whereas that of growth differentiation factor 9 (GDF9) decreased in matured oocytes. In addition, PTGS2 expression increased and POU class 5 homeobox 1 (POU5F1) expression decreased in 4-cell embryos developed from both G+ and G- oocytes. Thus, regardless of toxin type, subclinical mastitis disrupts oocyte cytoplasmic maturation and alters gene expression in association with reduced developmental competence.

8.
Reproduction ; 147(1): 33-43, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24129150

RESUMO

Mastitis is associated with decreased fertility in dairy cows. In the current study, we created an experimental model to simulate short-term mastitis by a single intramammary administration of Gram-negative endotoxin of Escherichia coli origin (G-), or Gram-positive toxin of Staphylococcus aureus origin (G+), to examine the effect of mastitis on oocyte developmental competence. Healthy Holstein cows were synchronized, and follicular fluid (FF) of cows treated with G+ or G- and of uninfected cows (controls) was aspirated from the preovulatory follicles by transvaginal ultrasound procedure. The aspirated FF was used as maturation medium for in vitro embryo production. The distribution of matured oocytes into different cortical granule classes and meiotic stages was affected by G- administration (P<0.05) but not by G+ administration. The proportion of oocytes that cleaved to two- and four-cell stage embryos (44 h postfertilization) was lower in both G+ and G- groups than in controls (P<0.05). Blastocyst formation rate (7-8 days postfertilization) was lower in the G- group (P<0.05) and numerically lower in the G+ group compared with their uninfected counterparts. The total cell number in blastocysts did not differ among groups; however, the apoptotic index was higher in the G+ group (P<0.05), but not in the G- group, relative to controls. Examining mRNA relative abundance in oocytes and early embryos revealed mastitis-induced alterations in PTGS2 (COX2), POU5F1, and HSF1 but not in SLC2A1 (GLUT1) or GDF9. Results indicate a differential disruptive effect of mastitis induced by G- and G+ on oocyte developmental competence in association with alterations in maternal gene expression.


Assuntos
Lactação/fisiologia , Mastite/fisiopatologia , Oócitos/fisiologia , Animais , Blastocisto/metabolismo , Bovinos , Escherichia coli , Feminino , Expressão Gênica , Lactação/metabolismo , Mastite/microbiologia , Oócitos/metabolismo , Oócitos/microbiologia , Staphylococcus aureus
9.
J Dairy Sci ; 96(10): 6499-505, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23957998

RESUMO

We examined the effects of naturally occurring mastitis on bovine oocyte developmental competence in vitro. Specifically, we investigated the effects of intramammary infection on the ovarian pool of oocytes (i.e., follicle-enclosed oocytes) and their ability to undergo in vitro maturation, fertilization, and further development to the blastocyst stage. Culled Holstein cows (n=50) from 9 commercial dairy farms in Israel were allotted to 3 groups according to somatic cell count (SCC) records of the last 3 monthly milk tests as well as of quarter samples collected before slaughter: (1) low SCC (n=7), (2) medium SCC (n=16), or (3) high SCC (n=27). Means of SCC values differed among low-, medium-, and high-SCC groups: 148,000, 311,000 and 1,813,000 cell/mL milk, respectively. Milk yield and days in milk did not differ among the 3 groups. Bacterial isolates included coagulase-negative staphylococci, Escherichia coli, Streptococcus dysgalactiae, or no bacteria found. Ovaries were collected at the abattoir and brought to the laboratory. Cumulus oocyte complexes were recovered separately from each cow and subjected individually to in vitro maturation and fertilization, followed by 8d in culture. The number of aspirated oocytes did not differ among groups, with a range of 17 to 21 oocytes per cow. The proportion of oocytes that cleaved into 2- to 4-cell-stage embryos (86.1 ± 3.4%) did not differ among groups. In contrast, mean percentages of embryos developed to the blastocyst stage on d 7 and 8 after fertilization were less in both medium- and-high SCC groups than in the low-SCC group (5.6 ± 2.3 and 4.1 ± 1.8 vs. 18.1 ± 4.6%, respectively). Additional analysis indicated that cleavage and blastocyst-formation rates did not differ among the bacterial types in the low-, medium-, and high-SCC groups. These are the first results to demonstrate that naturally occurring mastitis disrupts the developmental competence of the ovarian pool of oocytes, (i.e., oocytes at the germinal vesicle stage). The disruption was associated with elevation of SCC rather than bacterial type. The results may provide a partial explanation for the low fertility of cows that have contracted mastitic pathogens before insemination.


Assuntos
Blastocisto/fisiologia , Mastite Bovina/microbiologia , Mastite Bovina/fisiopatologia , Oócitos/fisiologia , Folículo Ovariano/embriologia , Animais , Blastocisto/microbiologia , Bovinos , Contagem de Células/veterinária , Feminino , Técnicas In Vitro , Leite/citologia , Oócitos/microbiologia , Folículo Ovariano/microbiologia
10.
Cell Biol Toxicol ; 28(6): 383-96, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22956148

RESUMO

In the last decade, potential exposure of humans and animals to industrial chemicals and pesticides has been a growing concern. In the present study, di-(2-ethylhexyl) phthalate (DEHP) and mono-(2-ethylhexyl) phthalate (MEHP) were used to model the effects of endocrine-disrupting compounds and their risk in relation to early embryonic losses. Exposure of cumulus oocyte complexes during maturation to 50 µM MEHP reduced the proportion of oocytes that underwent nuclear maturation (p < 0.05) and increased the proportion of apoptotic oocytes (p < 0.05). Furthermore, phthalates reduced cleavage rate in the MEHP-treated group (p < 0.05) and the proportion of embryos developing to the blastocyst stage in both DEHP- and MEHP-treated groups (p < 0.05). The total cell count for blastocysts developing from MEHP-treated oocytes was lower than in controls (p < 0.05). Exposure of oocytes to MEHP during maturation reduced (p < 0.05) the expression of ASAH1 (an anti-apoptotic factor), CCNA2 (involved in cell cycle control), and POU5F1 (responsible for pluripotency) in matured oocytes. Furthermore, the reduced mRNA expression of POU5F1 and ASAH1 lasted into two-cell stage embryos (p < 0.05). Phthalate-induced alterations in POU5F1, ASAH1, and CCNA2 expression might explain in part the reduced developmental competence of MEHP-treated oocytes.


Assuntos
Fase de Clivagem do Zigoto/efeitos dos fármacos , Dietilexilftalato/análogos & derivados , Dietilexilftalato/toxicidade , Embrião de Mamíferos/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Ceramidase Ácida/biossíntese , Ceramidase Ácida/genética , Animais , Blastocisto/efeitos dos fármacos , Bovinos , Núcleo Celular/efeitos dos fármacos , Ciclina A2/biossíntese , Fragmentação do DNA/efeitos dos fármacos , Embrião de Mamíferos/fisiologia , Fator 3 de Transcrição de Octâmero/biossíntese , Fator 3 de Transcrição de Octâmero/genética , Oócitos/citologia , Oócitos/fisiologia , Oogênese/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...