Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Drug Resist ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727600

RESUMO

Invasive fungal infections in humans with compromised immune systems are the primary cause of morbidity and mortality, which is becoming more widely acknowledged. Amphotericin B (AmB) is one of the antifungal drugs used to treat such infections. AmB binds with plasma membrane ergosterol, inducing cellular ions to leak and causing cell death. Reduction in ergosterol content and modification of cell walls have been described as AmB resistance mechanisms. In addition, when the sphingolipid level is decreased, the cell becomes more susceptible to AmB. Previously, PDR16, a gene that encodes phosphatidylinositol transfer protein in Saccharomyces cerevisiae, was shown to enhance AmB resistance upon overexpression. However, the mechanism of PDR16-mediated AmB resistance is not clear. Here, in this study, it was discovered that a plasma membrane proteolipid 3 protein encoded by PMP3 is essential for PDR16-mediated AmB resistance. PDR16-mediated AmB resistance does not depend on ergosterol, but a functional sphingolipid biosynthetic pathway is required. Additionally, PMP3-mediated alteration in membrane integrity abolishes PDR16 mediated AmB resistance, confirming the importance of PMP3 in the PDR16 mediated AmB resistance.

2.
Microbiol Res ; 283: 127671, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479232

RESUMO

Pathogenic fungal species can cause superficial and mucosal infections, to potentially fatal systemic or invasive infections in humans. These infections are more common in immunocompromised or critically ill patients and have a significant morbidity and fatality rate. Fungal pathogens utilize several strategies to adapt the host environment resulting in efficient and comprehensive alterations in their cellular metabolism. Fungal virulence is regulated by several factors and post-transcriptional regulation mechanisms involving mRNA molecules are one of them. Post-transcriptional controls have emerged as critical regulatory mechanisms involved in the pathogenesis of fungal species. The untranslated upstream and downstream regions of the mRNA, as well as RNA-binding proteins, regulate morphogenesis and virulence by controlling mRNA degradation and stability. The limited number of available therapeutic drugs, the emergence of multidrug resistance, and high death rates associated with systemic fungal illnesses pose a serious risk to human health. Therefore, new antifungal treatments that specifically target mRNA pathway components can decrease fungal pathogenicity and when combined increase the effectiveness of currently available antifungal drugs. This review summarizes the mRNA degradation pathways and their role in fungal pathogenesis.


Assuntos
Antifúngicos , Fungos , Humanos , Antifúngicos/metabolismo , Fungos/genética , Fungos/metabolismo , Virulência/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Fúngicas/metabolismo
3.
APMIS ; 131(8): 442-462, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37337929

RESUMO

Multidrug resistance Candida auris is a dangerous fungal pathogen that is emerging at an alarming rate and posing serious threats to public health. C. auris is associated with nosocomial infections that cause invasive candidiasis in immunocompromised patients. Several antifungal drugs with distinct mechanisms of action are clinically approved for the treatment of fungal infections. The high rates of intrinsic and acquired drug resistance, particularly to azoles, reported in characterized clinical isolates of C. auris make treatment extremely problematic. In systemic infections, azoles are the first-line treatment for most Candida species; however, the increasing use of drugs results in the frequent emergence of drug resistance. More than 90% of the clinical isolates of C. auris is shown to be highly resistant to azole drugs especially fluconazole, with some strains (types) resistant to all three classes of commonly used antifungals. This presents a huge challenge for researchers in terms of completely understanding the molecular mechanism of azole resistance to develop more efficient drugs. Due to the scarcity of C. auris therapeutic alternatives, the development of successful drug combinations provides an alternative for clinical therapy. Taking advantage of various action mechanisms, such drugs in combination with azole are likely to have synergistic effects, improving treatment efficacy and overcoming C. auris azole drug resistance. In this review, we outline the current state of understanding about the mechanisms of azole resistance mainly fluconazole, and the current advancement in therapeutic approaches such as drug combinations toward C. auris infections.


Assuntos
Azóis , Candidíase Invasiva , Humanos , Azóis/farmacologia , Azóis/uso terapêutico , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Candida auris , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...