Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 104(7): 7781-7793, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33865598

RESUMO

We reported recently that adding bakery by-products (BP) to the diets of dairy cows up to 30% improved performance and rumen pH, but caused major shifts in the nutrient profile and availability, likely modifying nutrient degradation patterns throughout the gastrointestinal tract. The aim of this study was to investigate the effects of the gradual replacement of cereals by BP on the apparent total-tract digestibility (ATTD), the fermentation patterns, and the microbial community in feces of dairy cows. Twenty-four mid-lactating Simmental cows (149 ± 22.3 days in milk, 756 ± 89.6 kg of initial body weight) were fed a total mixed ration ad libitum (fresh feed was offered twice per day) containing a 50:50 ratio of forage to concentrate (dry matter basis) throughout the experiment. The trial lasted 5 wk, whereby the first week was used for baseline measurements, in which all cows received the same diet, without BP. Cows were then randomly allocated into 3 groups differing in the BP content of diets (0% BP, 15% BP, and 30% BP on a DM basis) and fed for 4 wk. Fecal samples were taken for analysis of pH, volatile fatty acids (VFA), and 16S rRNA gene sequencing. The inclusion of BP resulted in an increase of ether extract and sugars, and a reduction of starch and neutral detergent fiber in the diet. Feeding BP linearly increased the ATTD of almost all nutrients resulting in up to 2 kg more digestible organic matter intake (DOMI). Increasing BP level up to 30% increased fecal total VFA concentration and decreased the pH. The proportion of butyrate in feces increased linearly, but the proportion of all other VFA was not affected by BP-feeding. The richness and diversity indices of the fecal microbiota linearly declined by the inclusion of BP. The cellulolytic phyla Fibrobacteres decreased, whereas amylolytic phyla, such as Proteobacteria, increased. Overall, results showed that feeding BP linearly increased ATTD and DOMI, but impaired fecal microbial diversity and pH. In the interest of the optimization of BP inclusion in the dairy cows' feeding, a dietary level between 15 to 30% of BP might be a better compromise than 30% in terms of an enhanced DOMI and performance with still lowered risk of hindgut dysbiosis, but this will require further investigations.


Assuntos
Ração Animal , Lactação , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Fibras na Dieta/metabolismo , Digestão , Fezes , Feminino , Fermentação , Concentração de Íons de Hidrogênio , Leite , Nutrientes , RNA Ribossômico 16S/metabolismo , Rúmen/metabolismo
2.
J Dairy Sci ; 103(11): 10122-10135, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32896410

RESUMO

Leftover bakery by-products (BP) from bakeries and supermarkets may serve as energy-rich ingredient in ruminant diets. The aim of the present study was to evaluate the effect of the successive substitution of cereal grains by BP on dry matter (DM) intake, milk production, and metabolic health as well as ruminal pH and eating and chewing behavior of dairy cows. Twenty-four lactating Simmental cows (149 ± 22.3 d in milk, lactation number 2.63 ± 1.38, 756 ± 89.6 kg of initial body weight) were fed a total mixed ration containing a 50:50 ratio of forage to concentrate throughout the experiment (35 d). During the first week, all cows received a control diet (without BP) as a baseline (d -7 to 0). In the next 4 wk (d 1 to 28), cows were allocated to 3 groups differing in the BP concentrations of diets [0% BP (CON), 15% BP, and 30% BP on a DM basis]. The DM intake and reticuloruminal pH were continuously measured. Blood and milk samples were taken every week, but only results from the experimental period (d 21 and 28) were used for statistical analyses, whereas results from the baseline were considered covariates. Diet analyses showed that BP inclusion increased the ether extract and sugar contents, whereby starch and neutral detergent fiber decreased. Experimental data showed that feeding BP in the diet increased DM intake. Furthermore, the cows fed 30% BP produced roughly 4 kg/d more milk and energy-corrected milk than the CON cows. The milk urea nitrogen was lower in cows fed the BP. Feeding BP reduced the blood glucose and insulin concentrations, whereas nonesterified fatty acids, ß-hydroxybutyrate, and cholesterol increased linearly. Cows fed 15% BP had the shortest period of time in which ruminal pH was below 5.8, in contrast to CON cows (+188 min/d). Taken together, the results suggest that the inclusion of up to 30% BP in the diets of mid-lactation dairy cows shifted the nutrient profile from a glucogenic diet to a lipogenic diet, holding the potential to enhance performance and lower the risk of subacute ruminal acidosis in dairy cows.


Assuntos
Acidose/veterinária , Ração Animal/análise , Doenças dos Bovinos/prevenção & controle , Bovinos/fisiologia , Metaboloma , Leite/metabolismo , Acidose/prevenção & controle , Animais , Análise Química do Sangue/veterinária , Peso Corporal , Bovinos/sangue , Dieta/veterinária , Fibras na Dieta/análise , Ingestão de Alimentos , Grão Comestível , Feminino , Concentração de Íons de Hidrogênio , Lactação , Estudos Longitudinais , Mastigação , Leite/química , Rúmen/metabolismo , Amido/análise , Resíduos/análise
3.
J Dairy Sci ; 103(9): 8467-8481, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32622591

RESUMO

During early lactation, both primiparous (PP) and multiparous (MP) cows are commonly fed diets rich in starch and low in forages to support their high energy requirements. Yet, the PP cows experience this dietary challenge for the first time, which might result in higher odds for them to develop rumen and systemic health disorders. The primary objective of this study was to evaluate the effect of decreasing the amount of forages in the diet on chewing and sorting behaviors and rumen and systemic health variables in PP and MP dairy cows. Twenty-four lactating Simmental cows [8 PP, average dry matter intake (DMI) of 19.1 ± 1.1 kg/d; 16 MP, average DMI of 22.5 ± 1.1 kg/d] with a body weight of 737 ± 90 kg and 50 ± 22 days in milk were used in this study. Cows were first fed a total mixed ration with 60% forage and 40% concentrate [on a dry matter (DM) basis] considered marginal in forages for 2 wk. Then, cows were switched to a diet low in forages with 40% forage and 60% concentrate (on a DM basis) for 4 wk. Reticular pH was measured continuously with wireless pH-sensors inserted into the reticulum to calculate the subacute ruminal acidosis (SARA) index. Chewing activity was measured with noseband-sensor halters, and feed sorting was measured weekly. Blood samples were collected weekly and analyzed for metabolic and inflammation markers. Switching PP and MP cows from a marginal to low-forage diet decreased the time spent eating and ruminating per kilogram of DM. Primiparous cows chewed longer per kilogram of DMI than MP cows. Also, the PP cows sorted more pronounced for longer particles and against fine particles than MP cows did. Despite higher rumination activity per kilogram of DMI and the adaptive sorting behavior, the PP cows spent on average 4.6 h/d longer below a pH of 5.8 and had a higher SARA index (i.e., area pH <5.8/DMI) than MP cows, especially during the first week of the low-forage diet (9.5 vs. 4.8). The concentration of liver enzymes increased with the low-forage diet, which was especially pronounced in the PP cows. In conclusion, this study demonstrated greater susceptibility of PP cows to SARA and liver damage than MP cows fed the same diets. Although PP cows demonstrated greater chewing and ruminating activity per kilogram of DMI, as well as adapted sorting behavior in favor of large particles during the low-forage high-starch feeding, they developed more severe signs of SARA. This suggests higher forage fiber requirements for PP cows and the need for improved feeding strategies to mitigate rumen fermentation disorders during early lactation in these cows.


Assuntos
Acidose/veterinária , Doenças dos Bovinos/fisiopatologia , Bovinos/fisiologia , Comportamento Alimentar , Mastigação , Rúmen/fisiopatologia , Acidose/fisiopatologia , Animais , Feminino , Paridade
4.
J Dairy Sci ; 101(4): 3085-3098, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29428759

RESUMO

A new segment of feed industry based on bakery by-products (BBP) has emerged. Yet, information is lacking regarding the effects of inclusion of BBP in ruminant diets on ruminal fermentation and microbiota. Therefore, the aim of this study was to evaluate the effect of the gradual replacement of grains by BBP on ruminal fermentation, nutrient degradation, and microbial community composition using the rumen-simulation technique. All diets consisted of hay and concentrate mixture with a ratio of 42:58 (dry matter basis), but differed in the concentrate composition with either 45% cereal grains or BBP, whereby 15, 30, or 45% of BBP were used in place of cereal grains. The inclusion of increasing levels of BBP in the diet linearly enhanced ruminal degradation of starch from 84% (control) to 96% (45% BBP), while decreasing degradation of crude protein and fiber. The formation of methane was lowered in the 45% BBP diet compared with all other diets. Whereas the ammonia concentration was similar in the control and 15% BBP, a significant decrease was found in 30% BBP (-23%) and 45% BBP (-33%). Also, BBP feeding shifted fermentation profile toward propionate at the expense of acetate. Moreover, isobutyrate linearly decreased with increasing BBP inclusion. Bacterial 16S rRNA Illumina MiSeq (Microsynth AG, Balach, Switzerland) sequencing revealed a decreased microbial diversity for the 45% BBP diet. Furthermore, the replacement of cereal grains with BBP went along with an increased abundance of the genera Prevotella, Roseburia, and Megasphaera, while decreasing Butyrivibrio and several OTU belonging to Ruminococcaceae. In conclusion, the inclusion of BBP at up to 30% of the dry matter had no detrimental effects on pH, fiber degradability, and microbial diversity, and enhanced propionate production. However, a higher replacement level (45%) impaired ruminal fermentation traits and fiber degradation and is not recommended.


Assuntos
Ração Animal/análise , Bovinos/fisiologia , Digestão/efeitos dos fármacos , Grão Comestível/química , Microbioma Gastrointestinal/efeitos dos fármacos , Rúmen/efeitos dos fármacos , Animais , Bovinos/microbiologia , Dieta/veterinária , Fermentação/efeitos dos fármacos , Técnicas In Vitro , Rúmen/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...