Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(37): 17599-17615, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39229656

RESUMO

Ti3C2-X MXenes have attracted tremendous research interest because their 2D laminar morphology provides numerous functional applications. The application options rely on the purity and interlayer spacing of MXenes, which eventually depend on the purity of the MAX phase. This motivated us to synthesize pure MAX phases to produce MXenes at large scale using simpler and less expensive techniques. However, producing prerequisite pure MAX phases at atmospheric pressure and relatively lower temperatures is still a challenging task. This study reports the synthesis of thermally stable pure MAX phases (and MXenes) by systematically varying the molar ratio of the precursors, reaction temperature, and reaction time using a novel MS5 process under atmospheric pressure conditions. The purity of MAX phases under different synthesis conditions shows a direct interrelationship with the 2D laminar morphology of MXenes. The highest purity of >99% for the MAX phase was achieved by reacting Ti : Al : C precursors in a 3 : 1.5 : 1.9 molar ratio at 1350 °C for 90 min and delivered highly distinctive 2D nanostructured laminar MXenes with larger interlayer spacing and specific surface area (i.e., 8.8 ± 0.1 m2 g-1), which are superior to those in previously reported works. These results reveal that the precursor molar ratios and reaction conditions tailor the MAX phase purity, thereupon, they are crucial for achieving good quality 2D laminar MXenes with large specific surface areas, further enhancing the performance of MXene-related devices. The developed MS5-MXenes, when probed as electrodes for Na ion applications, show excellent initial and reversible capacity values of 142 mA h g-1 and 103 mA h g-1 (at 50 mA g-1), respectively.

2.
RSC Adv ; 14(34): 25062-25070, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39135972

RESUMO

Sodium-ion batteries (SIBs) are emerging as the best replacement for Li-ion batteries. In this regard, research on developing a reliable cathode material for SIBs is burgeoning. Rhombohedral Na3V2(PO4)3 (NVP), is a typical sodium super ionic conductor (NASICON) type material having prominent usage as a cathode material for SIBs. In this study, we prepared an NVP@C composite using a one-step hydrothermal method (at 180 °C) and consecutively calcined at different temperatures (750, 800, 850, and 900 °C). All the samples were thoroughly characterized and the changes in the crystal structure and particle size distribution were investigated using a Rietveld refinement method. NVP calcined at 850 °C exhibits the best battery performance with a discharge capacity of 94 mA h g-1 and retention up to 90% after 250 cycles at 2C. It also exhibits remarkable cycling stability with 94% (63 mA h g-1) retention after 2000 cycles at high-rate endurance (10C). The observed electrochemical performances of the samples were correlated with improved electrical conductivity due to the conductive carbon mixing with Na3V2(PO4)3 and enhancement in the crystallinity.

3.
RSC Adv ; 14(18): 12313-12322, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38633501

RESUMO

The study presents a novel, one-pot, and scalable solid-state reaction scheme to prepare bismuth sulphide (Bi2S3)-reduced graphene oxide (rGO) nanocomposites using bismuth oxide (Bi2O3), thiourea (TU), and graphene oxide (GO) as starting materials for energy storage applications. The impact of GO loading concentration on the electrochemical performance of the nanocomposites was investigated. The reaction follows a diffusion substitution pathway, gradually transforming Bi2O3 powder into Bi2S3 nanostrips, concurrently converting GO into rGO. Enhanced specific capacitances were observed across all nanocomposite samples, with the Bi2S3@0.2rGO exhibiting the highest specific capacitance of 705 F g-1 at a current density of 1 A g-1 and maintaining a capacitance retention of 82% after 1000 cycles. The superior specific capacitance is attributed to the excellent homogeneity and synergistic relation between rGO and Bi2S3 nanostrips. This methodology holds promise for extending the synthesis of other chalcogenides-rGO nanocomposites.

4.
ACS Appl Mater Interfaces ; 15(29): 34651-34661, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37462235

RESUMO

A 3D framework with Nasicon structured polyanionic Na3V2(PO4)3 (NVP) has been emphasized as a leading cathode material for sodium-ion batteries (SIBs) due to its high working voltage plateau, structural stability, and good rate performance. Herein, pristine NVP and MWCNT@NVP composite synthesized via a facile solid-state method are examined and compared as cathode materials for Na-ion batteries. The morphological study confirms the uniform distribution of MWCNTs in the pristine NVP structure. Impedance spectroscopy clearly confirms more diffusion of Na ions for the MWCNT@NVP composite as compared to pristine NVP, considering its diffusion coefficient which directly implies on an increase in specific capacity. MWCNT@NVP (FNV-2) showed specific discharge capacity 110 mAhg-1 at 0.1C current rate which is almost stable at higher current rates with marginal fading. However, the pristine NVP shows capacity loss at a higher current rate. It is noteworthy that the MWCNT@NVP composite shows stable performance with marginal specific capacity fading (1%) compared to pristine (15%). This is because of the mechanical integrity and stability afforded to the composite by the intertwined MWCNT framework in the MWCNT@NVP composite matrix against electrode degradation during the electrochemical reaction. More significantly, even at a higher current rate, that is, at 10 C, the composite recorded a very stable and excellent Columbic efficiency of 97% with a reversible specific capacity of 94 mAhg-1 after 2000 cycles. An enhanced electrochemical performance, that is, rate capability and cycling stability, demonstrates the high potential of the MWCNT@NVP composite for Na-ion storage. Moreover, a sodium-ion full cell with hard carbon demonstrated a reversible capacity of 103 mAhg-1 at C/20 current rate, which clearly demonstrates that MWCNT@NVP is a promising cathode material for sodium-ion batteries.

5.
ACS Appl Mater Interfaces ; 15(20): 24366-24376, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37186545

RESUMO

Aqueous zinc-ion batteries (ZIBs) provide a safer and cost-effective energy storage solution by utilizing nonflammable water-based electrolytes. Although many research efforts are focused on optimizing zinc anode materials, developing suitable cathode materials is still challenging. In this study, one-dimensional, mixed-phase MnO2 nanorods are synthesized using ionic liquid (IL). Here, the IL acts as a structure-directing agent that modifies MnO2 morphology and introduces mixed phases, as confirmed by morphological, structural, and X-ray photoelectron spectroscopy (XPS) studies. The MnO2 nanorods developed by this method are utilized as a cathode material for ZIB application in the coin-cell configuration. As expected, Zn//MnO2 nanorods show a significant increase in their capacity to 347 Wh kg-1 at 100 mA g-1, which is better than bare MnO2 nanowires (207.1 Wh kg-1) synthesized by the chemical precipitation method. The battery is highly rechargeable and maintains good retention of 86% of the initial capacity and 99% Coulombic efficiency after 800 cycles at 1000 mA g-1. The ex situ XPS, X-ray diffraction, and in-depth electrochemical analysis confirm that MnO6 octahedra experience insertion/extraction of Zn2+ with high reversibility. This study suggests the potential use of MnO2 nanorods to develop high-performance and durable battery electrode materials suitable for large-scale applications.

6.
ACS Omega ; 6(8): 5717-5729, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33681611

RESUMO

Herein, overall improvement in the electrochemical performance of manganese dioxide is achieved through fine-tuning the microstructure of partially Co-doped manganese dioxide nanomaterial using facile hydrothermal method with precise control of preparative parameters. The structural investigation exhibits formation of a multiphase compound accompanied by controlled reflections of α-MnO2 as well as γ-MnO2 crystalline phases. The morphological examination manifests the presence of MnO2 nanowires having a width of 70-80 nm and a length of several microns. The Co-doped manganese dioxide electrode displayed a particular capacitive behavior along with a rising order of capacitance concerning with increased cobalt ion concentration suitable for certain limits. The value of specific capacitance achieved by a 5% Co-doped manganese dioxide sample was 1050 F g-1 at 0.5 A g-1, which was nearly threefold greater than that achieved by a bare manganese dioxide electrode. Furthermore, Co-doped manganese dioxide nanocomposite electrode exhibits exceptional capacitance retention (92.7%) till 10,000 cycles. It shows the good cyclability as well as stability of the material. Furthermore, we have demonstrated the solid-state supercapacitor with good energy and power density.

7.
Nanotechnology ; 29(28): 285705, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-29697053

RESUMO

Cobalt oxide is a transition metal oxide, well studied as an electrode material for energy storage applications, especially in supercapacitors and rechargeable batteries, due to its high charge storage ability. However, it suffers from low conductivity, which effectively hampers its long-term stability. In the present work, a simple strategy to enhance the conductivity of cobalt oxide is adopted to achieve stable electrochemical performance by means of carbon coating and Mn doping, via a simple and controlled, urea-assisted glycine-nitrate combustion process. Structural analysis of carbon coated Mn-doped Co3O4 (Mn-Co3O4@C) confirms the formation of nanoparticles (∼50 nm) with connected morphology, exhibiting spinel structure. The Mn-Co3O4@C electrode displays superior electrochemical performance as a Li-ion battery anode, delivering a specific capacity of 1250 mAh g-1. Mn-Co3O4@C demonstrates excellent performance in terms of long-term stability, keeping charge storage ability intact even at high current rates due to the synergistic effects of fast kinetics-provided by enriched electronic conductivity, which allows ions to move freely to active sites and electrons from reaction sites to substrate during redox reactions-and high surface area combined with mesoporous architecture. The fully assembled battery device using Mn-Co3O4@C and standard LiCoO2 electrode shows 90% capacity retention over 100 cycles.

8.
ACS Appl Mater Interfaces ; 9(40): 34773-34782, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28926228

RESUMO

Lithium ion batteries (LIBs) with polymer based electrolytes have attracted enormous attention due to the possibility of fabricating intrinsically safer and flexible devices. However, economical and eco-friendly sustainable technology is an oncoming challenge to fulfill the ever increasing demand. To circumvent this issue, we have developed a gel polymer electrolyte (GPE) based on renewable polymers like cellulose triacetate and poly(polyethylene glycol methacrylate) p(PEGMA) using a photo polymerization technique. Cellulose triacetate offers good mechanical strength with improved ionic conductivity, owing to its ether and carbonyl functional groups. It is observed that the presence of an open network has a critical impact on lithium ion transport. At room temperature, GPE PC exhibits an optimal ionic conductivity of 1.8 × 10-3 S cm-1 and transference number of 0.7. Interestingly, it affords an excellent electrochemical stability window up to 5.0 V vs Li/Li+. GPE PC shows a discharge capacity of 164 mAhg-1 after the first cycle when evaluated in a Li/GPE/LiFePO4 cell at 0.5 C-rate. Interfacial compatibility of GPE PC with lithium metal improves the overall cycling performance. This system provides a guiding principle toward a future renewable and flexible electrolyte design for flexible LIBs (FLIBs).

9.
ACS Appl Mater Interfaces ; 8(32): 20710-9, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27463563

RESUMO

A composite gel polymer electrolyte (CGPE) based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer that includes Al-doped Li0.33La0.56TiO3 (A-LLTO) particles covered with a modified SiO2 (m-SiO2) layer was fabricated through a simple solution-casting method followed by activation in a liquid electrolyte. The obtained CGPE possessed high ionic conductivity, a large electrochemical stability window, and interfacial stability-all superior to that of the pure gel polymer electrolyte (GPE). In addition, under a highly polarized condition, the CGPE effectively suppressed the growth of Li dendrites due to the improved hardness of the GPE by the addition of inorganic A-LLTO/m-SiO2 particles. Accordingly, the Li-ion polymer and Li-O2 cells employing the CGPE exhibited remarkably improved cyclability compared to cells without CGPE. In particular, the CGPE as a protection layer for the Li metal electrode in a Li-O2 cell was effective in blocking the contamination of the Li electrode by oxygen gas or impurities diffused from the cathode side while suppressing the Li dendrites.

10.
Phys Chem Chem Phys ; 17(47): 31850-61, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26568094

RESUMO

Hierarchical 3D ZnIn2S4/graphene (ZnIn2S4/Gr) nano-heterostructures were successfully synthesized using an in-situ hydrothermal method. The dual functionality of these nano-heterostructures i.e. for solar hydrogen production and lithium ion batteries has been demonstrated for the first time. The ZnIn2S4/Gr nano-heterostructures were optimized by varying the concentrations of graphene for utmost hydrogen production. An inspection of the structure shows the existence of layered hexagonal ZnIn2S4 wrapped in graphene. The reduction of graphene oxide (GO) to graphene was confirmed by Raman and XPS analyses. The morphological analysis demonstrated that ultrathin ZnIn2S4 nanopetals are dispersed on graphene sheets. The optical study reveals the extended absorption edge to the visible region due to the presence of graphene and hence is used as a photocatalyst to transform H2S into eco-friendly hydrogen using solar light. The ZnIn2S4/Gr nano-heterostructure that is comprised of graphene and ZnIn2S4 in a weight ratio of 1 : 99 exhibits enhanced photocatalytically stable hydrogen production i.e. ∼6365 µmole h(-1) under visible light irradiation using just 0.2 g of nano-heterostructure, which is much higher as compared to bare hierarchical 3D ZnIn2S4. The heightened photocatalytic activity is attributed to the enhanced charge carrier separation due to graphene which acts as an excellent electron collector and transporter. Furthermore, the usage of nano-heterostructures and pristine ZnIn2S4 as anodes in lithium ion batteries confers the charge capacities of 590 and 320 mA h g(-1) after 220 cycles as compared to their initial reversible capacities of 645 and 523 mA h g(-1), respectively. These nano-heterostructures show high reversible capacity, excellent cycling stability, and high-rate capability indicating their potential as promising anode materials for LIBs. The excellent performance is due to the nanostructuring of ZnIn2S4 and the presence of a graphene layer, which works as a channel for the supply of electrons during the charge-discharge process. More significantly, their dual functionality in energy generation and storage is quite unique and commendable.

11.
J Nanosci Nanotechnol ; 15(2): 1253-60, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26353641

RESUMO

Mesoporous carbon (MPC) with highly textured, reproducible and uniform structure is prepared by silica-sol template assisted method, as new carbonaceous supercapacitor materials with high energy density. High resolution transmission electron microscopy studies revealed that the MPC consisted of textured structure of carbon on the sheets like domains and exhibited a specific surface area of 1412 m2 g-1. The symmetric supercapacitor of MPC exhibits an excellent cyclability over 5000 cycles and high energy density of 84.6 Wh kg-1, with a cell potential of 1.6 V and a large specific capacitance of 238 F g-1 in neutral electrolyte. The enhanced performance of the carbon material as a supercapacitor electrode is due to the synergetic effect possibly contributed from the fast ion transportation during fast charge/discharge and better utilization of carbon.

12.
Sci Rep ; 5: 13266, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26292965

RESUMO

An effective integrated design with a free standing and carbon-free architecture of spinel MnCo2O4 oxide prepared using facile and cost effective hydrothermal method as the oxygen electrode for the Li-O2 battery, is introduced to avoid the parasitic reactions of carbon and binder with discharge products and reaction intermediates, respectively. The highly porous structure of the electrode allows the electrolyte and oxygen to diffuse effectively into the catalytically active sites and hence improve the cell performance. The amorphous Li2O2 will then precipitate and decompose on the surface of free-standing catalyst nanorods. Electrochemical examination demonstrates that the free-standing electrode without carbon support gives the highest specific capacity and the minimum capacity fading among the rechargeable Li-O2 batteries tested. The Li-O2 cell has demonstrated a cyclability of 119 cycles while maintaining a moderate specific capacity of 1000 mAh g(-1). Furthermore, the synergistic effect of the fast kinetics of electron transport provided by the free-standing structure and the high electro-catalytic activity of the spinel oxide enables excellent performance of the oxygen electrode for Li-O2 cells.

13.
ACS Appl Mater Interfaces ; 7(31): 17226-37, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26186401

RESUMO

The major obstacle in realizing sodium (Na)-ion batteries (NIBs) is the absence of suitable negative electrodes. This is because graphite, a commercially well known anode material for lithium-ion batteries, cannot be utilized as an insertion host for Na ions due to its large ionic size. In this study, a simple and cost-effective hydrothermal method to prepare carbon coated tin oxide (SnO2) nanostructures as an efficient anode material for NIBs was reported as a function of the solvent used. A single phase SnO2 resulted for the ethanol solvent, while a blend of SnO and SnO2 resulted for the DI water and ethylene glycol solvents. The elemental mapping in the transmission electron microscopy confirmed the presence of carbon coating on the SnO2 nanoparticles. In cell tests, the anodes of carbon coated SnO2 prepared in ethanol solvent exhibited stable cycling performance and attained a capacity of about 514 mAh g(-1) on the first charge. With the help of the conductive carbon coating, the SnO2 delivers more capacity at high rates: 304 mAh g(-1) at the 1 C rate, 213 mAh g(-1) at the 2 C rate and 133 mAh g(-1) at the 5 C rate. The excellent cyclability and high rate capability are the result of the formation of a mixed conducting network and uniform carbon coating on the SnO2 nanoparticles.

14.
Nanoscale ; 7(6): 2552-60, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25579776

RESUMO

In this study, a novel method has been proposed for synthesizing amorphous GeO2/C composites. The amorphous GeO2/C composite without carbon black as an electrode for Li-ion batteries exhibited a high specific capacity of 914 mA h g(-1) at the rate of C/2 and enhanced rate capability. The amorphous GeO2/C electrode exhibited excellent electrochemical stability with a 95.3% charge capacity retention after 400 charge-discharge cycles, even at a high current charge-discharge of C/2. Furthermore, a full cell employing the GeO2/C anode and the LiCoO2 cathode displayed outstanding cycling performance. The superior performance of the GeO2/C electrode enables the amorphous GeO2/C to be a potential anode material for secondary Li-ion batteries.

15.
Nanoscale ; 6(17): 10071-6, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25033093

RESUMO

To fulfill the high power and high energy density demands for Li-ion batteries (LIBs) new anode materials need to be explored to replace conventional graphite. Herein, we report the urea assisted facile co-precipitation synthesis of spinel NiCo2O4 and its application as an anode material for LIBs. The synthesized NiCo2O4 exhibited an urchin-like microstructure and polycrystalline and mesoporous nature. In addition, the mesoporous NiCo2O4 electrode exhibited an initial discharge capacity of 1095 mA h g(-1) and maintained a reversible capacity of 1000 mA h g(-1) for 400 cycles at 0.5 C-rate. The reversible capacity of NiCo2O4 could still be maintained at 718 mA h g(-1), even at 10 C. The mesoporous NiCo2O4 exhibits great potential as an anode material for LIBs with the advantages of unique performance and facile preparation.

16.
Dalton Trans ; 43(30): 11723-7, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24953185

RESUMO

B2O3-added Li(1.5)Al(0.5)Ge(1.5)(PO4)3 (LAGP) glass ceramics showing a room temperature ionic conductivity of 0.67 mS cm(-1) have been synthesized by using a melt-quenching method. The prepared glass ceramics are observed to be stable in tetraethylene glycol dimethyl ether containing lithium bis(trifluoromethane) sulfonamide. The augmented conductivity of the B2O3-added LAGP glass ceramic has improved the plateau potential during discharge. Furthermore, the B2O3-added LAGP glass ceramics are successfully employed as a solid electrolyte in a Li-O2 battery to obtain a stable cycling lifetime of up to 15 cycles with the limited capacity protocol.

17.
Nanotechnology ; 24(36): 365401, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23942239

RESUMO

A carbon nanotube (CNT)/cerium oxide composite was prepared by a one-pot hydrothermal reaction in the presence of KOH and capping agent polyvinylpyrrolidone. The nanocomposite displayed pronounced capacitive behaviour with very small diffusion resistance. The electrochemical performance of the composite electrode in a symmetric supercapacitor displayed a high energy density of 35.9 Wh kg(-1) corresponding to a specific capacitance of 289 F g(-1). These composite electrodes also demonstrated a long cycle life with better capacity retention.

18.
Nanotechnology ; 23(43): 435703, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23059839

RESUMO

This study suggests combustion synthesized Ce(1-x)Zr(x)O(2) (CZO; x = 0.1-0.5) as a new catalyst for the cathode in non-aqueous electrolyte based Li/O(2) cells. The spherical catalysts have a fluorite structure with a mean diameter of 5-17 nm. Zr doping into the ceria lattice leads to the reduction of Ce(4+) to Ce(3+), which further improves the catalyst performance. Electrochemical studies of CZO as a cathode catalyst in the Li/O(2) cell show that CZO follows a two-electron pathway for oxygen reduction. A maximum discharge capacity of 1620 mAh g(-1) is obtained for the Ce(0.8)Zr(0.2)O(2) catalyst due to its high surface area and porosity. A composite of CZO and MnO(2) shows even better performance as a cathode catalyst for the Li/O(2) cell.

19.
Nanotechnology ; 22(39): 395402, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21896976

RESUMO

Nanorods with an α type MnO(2) structure and a diameter ranging from 25 to 40 nm, along with tipped needles with a ß MnO(2) structure and a diameter of 100 nm were obtained. The 25 nm diameter α MnO(2) nanorods showed the best catalytic activity for dissociation of HO(2)(-) formed during oxygen reduction in a KOH solution. The MnO(2) nanostructures preferably followed a two-electron oxygen reduction mechanism in a LiOH solution. The size of the catalyst also affected the specific capacities of the non-aqueous Li/O(2) batteries fabricated using the MnO(2) based air electrode. The highest specific capacity of 1917 mA h g(-1) was obtained for an α MnO(2) nanorod catalyst having a diameter of 25 nm. The cation present in the MnO(2) nanostructures appears to determine the catalytic activity of MnO(2).


Assuntos
Compostos de Manganês/química , Nanoestruturas/química , Óxidos/química , Oxigênio/química , Catálise , Nanoestruturas/ultraestrutura , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA