Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1379714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872928

RESUMO

Chronic inflammatory enteropathies (CIEs) are an important group of diseases in dogs and involve complex pathogenetic aspects. Endoscopy and histopathology are vital for documenting the disease but are less useful for subclassifying CIEs and predicting the response to treatment. However, healing of the mucosal disease process (deep remission) and ultrastructural evaluation of the mucosa have received little attention in canine CIE. Given that canine CIE shares many similarities with inflammatory bowel diseases (IBDs) in human patients-and presents a good spontaneous disease model for human IBD-this perspective article evaluates the literature on ultrastructural lesions in canine CIE and human IBD and offers future directions for the study of ultrastructural mucosal lesions in canine CIE. Such lesions might have a higher sensitivity of detection than structural changes revealed upon light microscopy and may even precede or remain after the resolution of the clinical signs and histologic lesions.

2.
Front Neuroanat ; 15: 678385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135738

RESUMO

Mammals are born on a precocial-altricial continuum. Altricial species produce helpless neonates with closed distant organs incapable of locomotion, whereas precocial species give birth to well-developed young that possess sophisticated sensory and locomotor capabilities. Previous studies suggest that distinct patterns of cortex development differ between precocial and altricial species. This study compares patterns of neocortex neurogenesis and maturation in the precocial guinea pig and altricial dwarf rabbit, both belonging to the taxon of Glires. We show that the principal order of neurodevelopmental events is preserved in the neocortex of both species. Moreover, we show that neurogenesis starts at a later postconceptional day and takes longer in absolute gestational days in the precocial than the altricial neocortex. Intriguingly, our data indicate that the dwarf rabbit neocortex contains a higher abundance of highly proliferative basal progenitors than the guinea pig, which might underlie its higher encephalization quotient, demonstrating that the amount of neuron production is determined by complex regulation of multiple factors. Furthermore, we show that the guinea pig neocortex exhibits a higher maturation status at birth, thus providing evidence for the notions that precocial species might have acquired the morphological machinery required to attain their high functional state at birth and that brain expansion in the precocial newborn is mainly due to prenatally initiating processes of gliogenesis and neuron differentiation instead of increased neurogenesis. Together, this study reveals important insights into the timing and cellular differences that regulate mammalian brain growth and maturation and provides a better understanding of the evolution of mammalian altriciality and presociality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...