Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 13(1): 109, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719813

RESUMO

Understanding the solid target dynamics resulting from the interaction with an ultrashort laser pulse is a challenging fundamental multi-physics problem involving atomic and solid-state physics, plasma physics, and laser physics. Knowledge of the initial interplay of the underlying processes is essential to many applications ranging from low-power laser regimes like laser-induced ablation to high-power laser regimes like laser-driven ion acceleration. Accessing the properties of the so-called pre-plasma formed as the laser pulse's rising edge ionizes the target is complicated from the theoretical and experimental point of view, and many aspects of this laser-induced transition from solid to overdense plasma over picosecond timescales are still open questions. On the one hand, laser-driven ion acceleration requires precise control of the pre-plasma because the efficiency of the acceleration process crucially depends on the target properties at the arrival of the relativistic intensity peak of the pulse. On the other hand, efficient laser ablation requires, for example, preventing the so-called "plasma shielding". By capturing the dynamics of the initial stage of the interaction, we report on a detailed visualization of the pre-plasma formation and evolution. Nanometer-thin diamond-like carbon foils are shown to transition from solid to plasma during the laser rising edge with intensities < 1016 W/cm². Single-shot near-infrared probe transmission measurements evidence sub-picosecond dynamics of an expanding plasma with densities above 1023 cm-3 (about 100 times the critical plasma density). The complementarity of a solid-state interaction model and kinetic plasma description provides deep insight into the interplay of initial ionization, collisions, and expansion.

2.
Light Sci Appl ; 12(1): 225, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37696783

RESUMO

A novel diagnostic method has been used to gain deeper insight into the transverse structure and its evolution of electron pulses generated from a laser-wakefield accelerator.

3.
Opt Express ; 29(10): 15724-15732, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985268

RESUMO

We present the setup of a compact, q-switched, cryogenically cooled Yb:YAG laser, which is capable of producing over 1 J output energy in a 10 ns pulse at 10 Hz. The system's design is based on the recently published unstable cavity layout with gain shaping of the spatial intra-cavity intensity distribution. Using a hexagonal homogenized pump beam, the laser generated an according hexagonal output beam profile. The suitability of such laser properties for the intended use in a laser shock peening process is demonstrated. In the experiment an aluminum plate was treated and the generated residual stresses in the sample subsequently measured. Other applications of this laser system like laser pumping or surface cleaning are conceivable.

4.
Opt Express ; 28(13): 19034-19043, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672189

RESUMO

A compact, femtosecond-pumped noncollinear optical parametric amplifier (NOPA) is presented with a passive spectral shaping technique, employed to produce a flat-top-like ultrabroadband output spectrum. The NOPA is pumped by a dedicated 2 mJ, 120 fs Yb3+-based CPA system, which generates both the second harmonic pump pulse and white light supercontinuum as the signal pulse. A chirped mirror pair pre-compensates the material GVD within the optical path of the signal pulse to produce a near-FTL pulse duration at the OPA crystal output. By optimizing both the pump/signal cross angle and the pump/signal delay, the 40 cm × 40 cm footprint, single-pass, fs-pumped, direct NOPA (non-NOPCPA) system generates a record 20 µJ, 11 fs pulses at 820 nm central wavelength with a bandwidth of 230 nm FWHM, to be used as an ultrashort optical probe pulse for relativistic laser-plasma interactions at the petawatt-class POLARIS laser system.

5.
Sci Rep ; 9(1): 17169, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748554

RESUMO

We report on a proton acceleration experiment in which high-intensity laser pulses with a wavelength of 0.4 µm and with varying temporal intensity contrast have been used to irradiate water droplets of 20 µm diameter. Such droplets are a reliable and easy-to-implement type of target for proton acceleration experiments with the potential to be used at very high repetition rates. We have investigated the influence of the laser's angle of incidence by moving the droplet along the laser polarization axis. This position, which is coupled with the angle of incidence, has a crucial impact on the maximum proton energy. Central irradiation leads to an inefficient coupling of the laser energy into hot electrons, resulting in a low maximum proton energy. The introduction of a controlled pre-pulse produces an enhancement of hot electron generation in this geometry and therefore higher proton energies. However, two-dimensional particle-in-cell simulations support our experimental results confirming, that even slightly higher proton energies are achieved under grazing laser incidence when no additional pre-plasma is present. Illuminating a droplet under grazing incidence generates a stream of hot electrons that flows along the droplet's surface due to self-generated electric and magnetic fields and ultimately generates a strong electric field responsible for proton acceleration. The interaction conditions were monitored with the help of an ultra-short optical probe laser, with which the plasma expansion could be observed.

6.
Phys Rev E ; 95(2-1): 023306, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28297858

RESUMO

Shadowgraphy is a technique widely used to diagnose objects or systems in various fields in physics and engineering. In shadowgraphy, an optical beam is deflected by the object and then the intensity modulation is captured on a screen placed some distance away. However, retrieving quantitative information from the shadowgrams themselves is a challenging task because of the nonlinear nature of the process. Here, we present a method to retrieve quantitative information from shadowgrams, based on computational geometry. This process can also be applied to proton radiography for electric and magnetic field diagnosis in high-energy-density plasmas and has been benchmarked using a toroidal magnetic field as the object, among others. It is shown that the method can accurately retrieve quantitative parameters with error bars less than 10%, even when caustics are present. The method is also shown to be robust enough to process real experimental results with simple pre- and postprocessing techniques. This adds a powerful tool for research in various fields in engineering and physics for both techniques.

7.
Opt Lett ; 42(2): 326-329, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28081104

RESUMO

We present pulse stretching with an intracavity Offner-type pulse stretcher applied to a high-energy, short-pulse laser system. The compact intracavity design, offering a tunable stretching factor, allows the pulses to be stretched to several nanoseconds and, at the same time, to be amplified to 100 µJ. The stretched pulses have been further amplified with the high-power laser system Polaris and have been recompressed to durations as short as 102 fs, reaching peak powers of 100 TW. Furthermore, the temporal intensity contrast is investigated and compared to the formerly used stretcher setup.

8.
Opt Lett ; 41(20): 4708-4711, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28005873

RESUMO

We present tunable spectral filters (TSFs) as a variable and precisely adjustable method to control the spectral gain of short-pulse laser systems. The TSFs provide a small residual spectral phase and a high damage threshold, and generate no pre- or post-pulses. The method is demonstrated for two different laser materials and can be applied as an intracavity compensation in regenerative amplifiers as well as a method for pre-compensation in high-energy multipass amplifiers. With this method, a full width at half-maximum bandwidth of 23.9 nm could be demonstrated in a diode-pumped, 50 J Yb:CaF2 amplifier.

9.
Opt Lett ; 41(22): 5413-5416, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27842146

RESUMO

We report on results from the fully diode-pumped chirped-pulse amplification laser system Polaris. Pulses were amplified to a maximum energy of 54.2 J before compression. These pulses have a full width at half-maximum spectral bandwidth of 18 nm centered at 1033 nm and are generated at a repetition rate of 0.02 Hz. To the best of our knowledge, these are the most energetic broadband laser pulses generated by a diode-pumped laser system so far. Due to the limited size of our vacuum compressor, only attenuated pulses could be compressed to a duration of 98 fs containing an energy of 16.7 J, which leads to a peak power of 170 TW. These pulses could be focused to a peak intensity of 1.3×1021 W/cm2. Having an ultra-high temporal contrast of 1012 with respect to amplified spontaneous emission these laser pulses are well suited for high-intensity laser-matter experiments.

10.
Opt Lett ; 41(13): 3006-9, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27367087

RESUMO

We demonstrate the generation of 86 fs, 35 mJ, high-contrast laser pulses at 1030 nm with a repetition rate of 1 Hz from a diode-pumped double chirped-pulse amplification setup. The pulses exhibit a spectral bandwidth exceeding 27 nm full width at half-maximum. This could be achieved by using a laser architecture comprising two stages of chirped pulse amplification with a cross-polarized wave generation filter in between, by applying spectral shaping and by increasing the spectral hard-clip of the second stretcher. These are, to the best of our knowledge, the shortest pulses at the mJ level with ultra-high contrast generated with a diode-pumped front end at 1030 nm.

11.
Opt Lett ; 41(11): 2525-8, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27244405

RESUMO

A technique to measure the spatially resolved temperature distribution in a laser medium is presented. It is based on the temperature dependence of the absorption cross section close to the zero-phonon line of the active medium. Since other materials in the beam path exhibit a high (and constant) transmission at this wavelength, the method can easily be applied in realistic amplifier setups. The method was successfully tested on three different samples, which were pumped by a pulsed laser diode with up to 150 W average power: side-cooled Yb:YAG and Yb:fluoride-phosphate glass at room temperature and face-cooled Yb:CaF2 at 120 K.

12.
Laser Photon Rev ; 10(2): 264-277, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27134684

RESUMO

An analytical model is presented describing the temporal intensity contrast determined by amplified spontaneous emission in high-intensity laser systems which are based on the principle of chirped pulse amplification. The model describes both the generation and the amplification of the amplified spontaneous emission for each type of laser amplifier. This model is applied to different solid state laser materials which can support the amplification of pulse durations ≤350 fs . The results are compared to intensity and fluence thresholds, e.g. determined by damage thresholds of a certain target material to be used in high-intensity applications. This allows determining if additional means for contrast improvement, e.g. plasma mirrors, are required for a certain type of laser system and application. Using this model, the requirements for an optimized high-contrast front-end design are derived regarding the necessary contrast improvement and the amplified "clean" output energy for a desired focussed peak intensity. Finally, the model is compared to measurements at three different high-intensity laser systems based on Ti:Sapphire and Yb:glass. These measurements show an excellent agreement with the model.

13.
Radiat Environ Biophys ; 54(2): 155-66, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25600561

RESUMO

The long-term goal to integrate laser-based particle accelerators into radiotherapy clinics not only requires technological development of high-intensity lasers and new techniques for beam detection and dose delivery, but also characterization of the biological consequences of this new particle beam quality, i.e. ultra-short, ultra-intense pulses. In the present work, we describe successful in vivo experiments with laser-driven electron pulses by utilization of a small tumour model on the mouse ear for the human squamous cell carcinoma model FaDu. The already established in vitro irradiation technology at the laser system JETI was further enhanced for 3D tumour irradiation in vivo in terms of beam transport, beam monitoring, dose delivery and dosimetry in order to precisely apply a prescribed dose to each tumour in full-scale radiobiological experiments. Tumour growth delay was determined after irradiation with doses of 3 and 6 Gy by laser-accelerated electrons. Reference irradiation was performed with continuous electron beams at a clinical linear accelerator in order to both validate the dedicated dosimetry employed for laser-accelerated JETI electrons and above all review the biological results. No significant difference in radiation-induced tumour growth delay was revealed for the two investigated electron beams. These data provide evidence that the ultra-high dose rate generated by laser acceleration does not impact the biological effectiveness of the particles.


Assuntos
Elétrons/uso terapêutico , Lasers , Aceleradores de Partículas , Radioterapia/instrumentação , Animais , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/radioterapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Transformação Celular Neoplásica , Relação Dose-Resposta à Radiação , Feminino , Humanos , Masculino , Camundongos , Radiometria
14.
Opt Express ; 22(20): 24776-86, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25322052

RESUMO

We present the results from a new frontend within a double-chirped pulse amplification architecture (DCPA) utilizing crossed-polarized wave generation (XPW) for generating ultra-high contrast, 150 µJ-level, femtosecond seed pulses at 1030 nm. These pulses are used in the high energy class diode-pumped laser system Polaris at the Helmholtz Institute in Jena. Within this frontend, laser pulses from a 75 MHz oscillator-pulse train are extracted at a repetition rate of 1 Hz, temporally stretched, amplified and then recompressed reaching a pulse energy of 2 mJ, a bandwidth of 12 nm and 112 fs pulse duration at a center wavelength of 1030 nm. These pulses are temporally filtered via XPW in a holographic-cut BaF2 crystal, resulting in 150 µJ pulse energy with an efficiency of 13 %. Due to this non-linear filtering, the relative intensity of the amplified spontaneous emission preceding the main pulse is suppressed to 2×10⁻¹³. This is, to the best of our knowledge, the lowest value achieved in a high peak power laser system operating at 1030 nm center wavelength.

15.
Opt Lett ; 39(6): 1333-6, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24690780

RESUMO

We report the amplification of laser pulses at a center wavelength of 1034 nm to an energy of 16.6 J from a fully diode-pumped amplifier using Yb:CaF2 as the active medium. Pumped by a total optical power of 300 kW from high-power laser diodes, a gain factor of g=6.1 was achieved in a nine-pass amplifier configuration agreeing with numerical simulations. A measured spectral bandwidth of 10 nm full width at half-maximum promises a bandwidth-limited compression of the pulses down to a duration of 150 fs. These are, to our knowledge, the most energetic laser pulses achieved from a diode-pumped chirped-pulse amplifier so far.

16.
Opt Express ; 21 Suppl 4: A726-34, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24104499

RESUMO

Temperature dependent absorption and emission cross-sections of 5 at% Yb(3+) doped yttrium lanthanum oxide (Yb:YLO) ceramic between 80K and 300 K are presented. In addition, we report on the first demonstration of ns pulse amplification in Yb:YLO ceramic. A pulse energy of 102 mJ was extracted from a multi-pass amplifier setup. The amplification bandwidth at room temperature confirms the potential of Yb:YLO ceramic for broad bandwidth amplification at cryogenic temperatures.

17.
Nat Commun ; 4: 2421, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24026068

RESUMO

Laser-plasma particle accelerators could provide more compact sources of high-energy radiation than conventional accelerators. Moreover, because they deliver radiation in femtosecond pulses, they could improve the time resolution of X-ray absorption techniques. Here we show that we can measure and control the polarization of ultra-short, broad-band keV photon pulses emitted from a laser-plasma-based betatron source. The electron trajectories and hence the polarization of the emitted X-rays are experimentally controlled by the pulse-front tilt of the driving laser pulses. Particle-in-cell simulations show that an asymmetric plasma wave can be driven by a tilted pulse front and a non-symmetric intensity distribution of the focal spot. Both lead to a notable off-axis electron injection followed by collective electron-betatron oscillations. We expect that our method for an all-optical steering is not only useful for plasma-based X-ray sources but also has significance for future laser-based particle accelerators.

18.
Artigo em Inglês | MEDLINE | ID: mdl-23679533

RESUMO

The expansion of a semi-infinite plasma slab into vacuum is analyzed with a hydrodynamic model implying a steplike electron energy distribution function. Analytic expressions for the maximum ion energy and the related ion distribution function are derived and compared with one-dimensional numerical simulations. The choice of the specific non-Maxwellian initial electron energy distribution automatically ensures the conservation of the total energy of the system. The estimated ion energies may differ by an order of magnitude from the values obtained with an adiabatic expansion model supposing a Maxwellian electron distribution. Furthermore, good agreement with data from experiments using laser pulses of ultrashort durations τ(L)

19.
Opt Lett ; 38(5): 718-20, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23455276

RESUMO

We report on the first generation of high-contrast, 164 fs duration pulses from the laser system POLARIS reaching focused peak intensities in excess of 2×10(20) W/cm2. To our knowledge, this is the highest peak intensity reported so far that has been achieved with a diode-pumped, solid-state laser. Several passive contrast enhancement techniques have been specially developed and implemented, achieving a relative prepulse intensity smaller than 10(-8) at t=-30 ps before the main pulse. Furthermore a closed-loop adaptive-optics system has been installed. Together with angular chirp compensation, this method has led to a significant reduction of the focal spot size and an increase of the peak intensity.

20.
Opt Express ; 21(23): 29006-12, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514416

RESUMO

We present a novel approach for the amplification of high peak power femtosecond laser pulses at a high repetition rate. This approach is based on an all-diode pumped burst mode laser scheme. In this scheme, pulse bursts with a total duration between 1 and 2 ms are be generated and amplified. They contain 50 to 2000 individual pulses equally spaced in time. The individual pulses have an initial duration of 350 fs and are stretched to 50 ps prior to amplification. The amplifier stage is based on Yb3+:CaF2 cooled to 100 K. In this amplifier, a total output energy in excess of 600 mJ per burst at a repetition rate of 10 Hz is demonstrated. For lower repetition rates the total output energy per burst can be scaled up to 915 mJ using a longer pump duration. This corresponds to an efficiency as high as 25% of extracted energy from absorbed pump energy. This is the highest efficiency, which has so far been demonstrated for a pulsed Yb3+:CaF2 amplifier.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...