Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 13(7)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37511788

RESUMO

Ischemic stroke is a leading cause of disability and mortality worldwide. The only approved treatment for ischemic stroke is thrombolytic therapy with tissue plasminogen activator (tPA), though this approach often leads to a severe complication: hemorrhagic transformation (HT). The pathophysiology of HT in response to tPA is complex and not fully understood. However, numerous scientific findings suggest that the enzymatic activity and expression of matrix metalloproteinases (MMPs) in brain tissue play a crucial role. In this review article, we summarize the current knowledge of the functioning of various MMPs at different stages of ischemic stroke development and their association with HT. We also discuss the mechanisms that underlie the effect of tPA on MMPs as the main cause of the adverse effects of thrombolytic therapy. Finally, we describe recent research that aimed to develop new strategies to modulate MMP activity to improve the efficacy of thrombolytic therapy. The ultimate goal is to provide more targeted and personalized treatment options for patients with ischemic stroke to minimize complications and improve clinical outcomes.

2.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955732

RESUMO

Peripheral nerve injury remains a serious problem for medicine, with no effective method of treatment at the moment. The most prominent example of this problem is neonatal brachial plexus palsy, which results from the stretching of the brachial plexus nerves in the birth or perinatal period. Multipotent mesenchymal cells (MSCs) and the extracellular vesicles (EVs) they produce are known to have a marked neuroprotective effect in central nervous system injuries. We suggested that the use of MSCs-derived EVs may be an effective approach to the regeneration of peripheral nerves after injury. Sciatic nerve injury was modeled in rats via crushing, and then a gel containing MSCs-EVs was applied to the injured area. After 15 and 30 days, a histological, physiological, and functional assessment of nerve, dorsal root ganglia (DRG), and innervated muscles' recovery was performed. Transplantation of EVs to the area of sciatic nerve injury significantly reduced muscle atrophy as compared to the control group. Functional recovery of the innervated muscles, as measured by the extensor postural thrust test, was revealed 30 days after the surgery. We associate the obtained results with EVs-induced neuroprotective mechanisms, which were expressed in a decrease in apoptotic neuronal death and an increase in regeneration-associated proteins NF-200 and GAP-43, as well as in DRG and damaged nerve. We suggest that the therapeutic scheme we used is efficient for the treatment of acute peripheral nervous system injuries and can be transferred to the clinics. However, additional studies are required for a more detailed analysis of neuroprotection mechanisms.


Assuntos
Lesões por Esmagamento , Vesículas Extracelulares , Células-Tronco Mesenquimais , Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Animais , Lesões por Esmagamento/patologia , Vesículas Extracelulares/patologia , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , Compressão Nervosa , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/patologia , Gravidez , Ratos , Nervo Isquiático/metabolismo , Neuropatia Ciática/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...