Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 136(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36762613

RESUMO

Cell division requires dramatic reorganization of the cell cortex, which is primarily driven by the actomyosin network. We previously reported that protocadherin 7 (PCDH7) gets enriched at the cell surface during mitosis, which is required to build up the full mitotic rounding pressure. Here, we report that PCDH7 interacts with and is palmitoylated by the palmitoyltransferase, ZDHHC5. PCDH7 and ZDHHC5 colocalize at the mitotic cell surface and translocate to the cleavage furrow during cytokinesis. The localization of PCDH7 depends on the palmitoylation activity of ZDHHC5. Silencing PCDH7 increases the percentage of multinucleated cells and the duration of mitosis. Loss of PCDH7 expression correlates with reduced levels of active RhoA and phospho-myosin at the cleavage furrow. This work uncovers a palmitoylation-dependent translocation mechanism for PCDH7, which contributes to the reorganization of the cortical cytoskeleton during cell division.


Assuntos
Citocinese , Protocaderinas , Lipoilação , Ciclo Celular , Mitose , Caderinas/genética
2.
Structure ; 29(11): 1219-1229.e3, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34192515

RESUMO

Phosphorylation is an essential post-translational modification for almost all cellular processes. Several global phosphoproteomics analyses have revealed phosphorylation profiles under different conditions. Beyond identification of phospho-sites, protein structures add another layer of information about their functionality. In this study, we systematically characterize phospho-sites based on their 3D locations in the protein and establish a location map for phospho-sites. More than 250,000 phospho-sites have been analyzed, of which 8,686 sites match at least one structure and are stratified based on their respective 3D positions. Core phospho-sites possess two distinct groups based on their dynamicity. Dynamic core phosphorylations are significantly more functional compared with static ones. The dynamic core and the interface phospho-sites are the most functional among all 3D phosphorylation groups. Our analysis provides global characterization and stratification of phospho-sites from a structural perspective that can be utilized for predicting functional relevance and filtering out false positives in phosphoproteomic studies.


Assuntos
Fosfoproteínas/metabolismo , Conformação Proteica , Proteoma/metabolismo , Humanos , Fosforilação , Proteômica
3.
Development ; 148(4)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33531432

RESUMO

KIF2A is a kinesin motor protein with essential roles in neural progenitor division and axonal pruning during brain development. However, how different KIF2A alternative isoforms function during development of the cerebral cortex is not known. Here, we focus on three Kif2a isoforms expressed in the developing cortex. We show that Kif2a is essential for dendritic arborization in mice and that the functions of all three isoforms are sufficient for this process. Interestingly, only two of the isoforms can sustain radial migration of cortical neurons; a third isoform, lacking a key N-terminal region, is ineffective. By proximity-based interactome mapping for individual isoforms, we identify previously known KIF2A interactors, proteins localized to the mitotic spindle poles and, unexpectedly, also translation factors, ribonucleoproteins and proteins that are targeted to organelles, prominently to the mitochondria. In addition, we show that a KIF2A mutation, which causes brain malformations in humans, has extensive changes to its proximity-based interactome, with depletion of mitochondrial proteins identified in the wild-type KIF2A interactome. Our data raises new insights about the importance of alternative splice variants during brain development.


Assuntos
Diferenciação Celular/genética , Movimento Celular/genética , Regulação da Expressão Gênica , Cinesinas/genética , Neurônios/citologia , Neurônios/metabolismo , Proteínas Repressoras/genética , Processamento Alternativo , Animais , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Perfilação da Expressão Gênica , Cinesinas/metabolismo , Camundongos , Mutação , Neurogênese/genética , Proteômica/métodos , Isoformas de RNA , Proteínas Repressoras/metabolismo
4.
J Proteome Res ; 19(8): 3583-3592, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32500712

RESUMO

Comprehensive profiling of the cell-surface proteome has been challenging due to the lack of tools for an effective and reproducible way to isolate plasma membrane proteins from mammalian cells. Here we employ a proximity-dependent biotinylation approach to label and isolate plasma membrane proteins without an extra in vitro labeling step, which we call Plasma Membrane-BioID. The lipid-modified BirA* enzyme (MyrPalm BirA*) was targeted to the inner leaflet of the plasma membrane, where it effectively biotinylated plasma membrane proteins. Biotinylated proteins were then affinity-purified and analyzed by mass spectrometry. Our analysis demonstrates that combining conventional sucrose density gradient centrifugation and Plasma Membrane-BioID is ideal to overcome the inherent limitations of the identification of integral membrane proteins, and it yields highly pure plasma components for downstream proteomic analysis.


Assuntos
Proteínas de Membrana , Proteômica , Animais , Biotinilação , Espectrometria de Massas , Proteoma
5.
Elife ; 82019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31038124

RESUMO

It is common to find considerable genetic variation in susceptibility to infection in natural populations. We have investigated whether natural selection increases this variation by testing whether host populations show more genetic variation in susceptibility to pathogens that they naturally encounter than novel pathogens. In a large cross-infection experiment involving four species of Drosophila and four host-specific viruses, we always found greater genetic variation in susceptibility to viruses that had coevolved with their host. We went on to examine the genetic architecture of resistance in one host species, finding that there are more major-effect genetic variants in coevolved host-pathogen interactions. We conclude that selection by pathogens has increased genetic variation in host susceptibility, and much of this effect is caused by the occurrence of major-effect resistance polymorphisms within populations.


Assuntos
Resistência à Doença/genética , Suscetibilidade a Doenças , Variação Genética , Interações Hospedeiro-Patógeno/genética , Infecções/genética , Alelos , Animais , Mapeamento Cromossômico , Drosophila melanogaster/genética , Feminino , Genes de Insetos , Infecções/virologia , Masculino , Polimorfismo Genético , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/virologia , Seleção Genética , Especificidade da Espécie , Carga Viral
6.
Sci Rep ; 7(1): 5894, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724976

RESUMO

It was previously reported that mRNA expression levels in the prefrontal cortex at old age start to resemble pre-adult levels. Such expression reversals could imply loss of cellular identity in the aging brain, and provide a link between aging-related molecular changes and functional decline. Here we analyzed 19 brain transcriptome age-series datasets, comprising 17 diverse brain regions, to investigate the ubiquity and functional properties of expression reversal in the human brain. Across all 19 datasets, 25 genes were consistently up-regulated during postnatal development and down-regulated in aging, displaying an "up-down" pattern that was significant as determined by random permutations. In addition, 113 biological processes, including neuronal and synaptic functions, were consistently associated with genes showing an up-down tendency among all datasets. Genes up-regulated during in vitro neuronal differentiation also displayed a tendency for up-down reversal, although at levels comparable to other genes. We argue that reversals may not represent aging-related neuronal loss. Instead, expression reversals may be associated with aging-related accumulation of stochastic effects that lead to loss of functional and structural identity in neurons.


Assuntos
Envelhecimento/genética , Encéfalo/citologia , Regulação da Expressão Gênica no Desenvolvimento , Doença de Alzheimer/genética , Diferenciação Celular/genética , Ontologia Genética , Humanos , Neurônios/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Sinapses/metabolismo , Regulação para Cima/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...