Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571543

RESUMO

The remote monitoring of patients using the internet of things (IoT) is essential for ensuring continuous observation, improving healthcare, and decreasing the associated costs (i.e., reducing hospital admissions and emergency visits). There has been much emphasis on developing methods and approaches for remote patient monitoring using IoT. Most existing frameworks cover parts or sub-parts of the overall system but fail to provide a detailed and well-integrated model that covers different layers. The leverage of remote monitoring tools and their coupling with health services requires an architecture that handles data flow and enables significant interventions. This paper proposes a cloud-based patient monitoring model that enables IoT-generated data collection, storage, processing, and visualization. The system has three main parts: sensing (IoT-enabled data collection), network (processing functions and storage), and application (interface for health workers and caretakers). In order to handle the large IoT data, the sensing module employs filtering and variable sampling. This pre-processing helps reduce the data received from IoT devices and enables the observation of four times more patients compared to not using edge processing. We also discuss the flow of data and processing, thus enabling the deployment of data visualization services and intelligent applications.


Assuntos
Internet das Coisas , Humanos , Coleta de Dados , Visualização de Dados , Pessoal de Saúde , Monitorização Fisiológica
2.
Sensors (Basel) ; 18(11)2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445755

RESUMO

The ever-growing Internet of Things (IoT) data traffic is one of the primary research focuses of future mobile networks. 3rd Generation Partnership Project (3GPP) standards like Long Term Evolution-Advanced (LTE-A) have been designed for broadband services. However, IoT devices are mainly based on narrowband applications. Standards like LTE-A might not provide efficient spectrum utilization when serving IoT applications. The aggregation of IoT data at an intermediate node before transmission can answer the issues of spectral efficiency. The objective of this work is to utilize the low cost 3GPP fixed, inband, layer-3 Relay Node (RN) for integrating IoT traffic into 5G network by multiplexing data packets at the RN before transmission to the Base Station (BS) in the form of large multiplexed packets. Frequency resource blocks can be shared among several devices with this method. An analytical model for this scheme, developed as an r-stage Coxian process, determines the radio resource utilization and system gain achieved. The model is validated by comparing the obtained results with simulation results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...