Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e27983, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545203

RESUMO

Global increase in recurrence of bacterial vaginosis (BV) and worrisome rise in antimicrobial resistance pose an urgent call for new/novel antibacterial agents. In light of the circumstance, the present study demonstrates the in vitro and in vivo antibacterial activity of a phytochemical citral, with a particular emphasis to elucidate its mechanistic action against Gardnerella vaginalis -a potential cause of BV. Out of 21 phytochemicals screened initially against G. vaginalis, citral was envisaged to be a phenomenal antibacterial agent showing MIC and MBC at 128 µg/mL. Citral's rapid killing ability was revealed by a time-killing kinetics assay supported by CFU, signifying that it completely killed the given inoculum of planktonic G. vaginalis cells within 60 min. Further, citral was found to exhibit 1 min contact-killing efficacy together with mature-biofilm disintegrating ability at increasing MICs. To further understand the molecular action of citral, in vitro investigations such as ROS estimation, PI staining and intracellular protein release assay were performed, which demonstrated that citral deteriorated the membrane integrity of G. vaginalis. Galleria mellonella, a simple invertebrate model used to evaluate citral's non-toxic and antibacterial activity in vivo, demonstrates that citral completely restored the larvae from G. vaginalis infection. The metabolite level investigation using LC-MS revealed that citral had negative impact on biotin metabolism (via., biotin), spermidine metabolism (via., 5'-methylthioadenosine and spermidine) and nucleotide metabolism (via., guanine, adenine and uridine). Since that biotin is associated with seven different metabolic pathways, it is conceivable that citral could target biotin biosynthesis or its metabolism and as a result, disrupt other metabolic pathways, such as lipid and fatty acid synthesis, which is essential for the creation of cell membranes. Thus, the current study is the first of its kind to delineate the promising in vitro and in vivo antibacterial efficacy of citral and decipher its plausible antibacterial action mechanism through metabolomic approach, which concomitantly emphasizes citral as a viable natural therapeutic alternative to manage and control BV.

2.
Neurotoxicol Teratol ; 97: 107178, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37142063

RESUMO

The present study was aimed to examine the behavioural and molecular alterations in experimental meningitis survivor rat model. On postnatal day (PND)-2, animals were assigned to different groups: (i) Control (Ctrl), (ii) Positive Control [PCtrl: gavaged with Luria-Bertani (LB) broth on PND-2 and received antibiotics treatment (AbT) from PND-5 to 11], (iii) Cronobacter sakazakii (CS: received single dose of live bacterial culture on PND-2) infected. Later, a subset of CS group received antibiotics treatment (AbT) from PND-5 to 11 and assigned as group (iv) (CS + AbT/ survivor). On PND-35, animals were subjected to behavioural tasks [viz., elevated plus maze (EPM) test and step-through inhibitory retention], and sacrificed for molecular analyses. We found that CS infection induces anxiety-like behaviour, impaired short/long-term memory and differentially altered the expression of brain-derived neurotrophic factor (BDNF) splice variants (III, IV and VI), decreased expression of BDNF, Src family tyrosine kinase (FYN), focal adhesion kinase (FAK) and nerve growth factor (NGF). The observed behavioural phenotype and expression pattern of candidate genes fit in the correlation. In addition, NGF expression was reduced in dentate gyrus (DG) and CA1 regions of hippocampus. Notably, antibiotic treatment reduced the anxiety-like behaviour, improved step-through inhibitory retention and suppressed infection induced reduction in BDNF, FYN, FAK and NGF expressions in survivors, however, not comparable to the control group. Overall, our experimental meningitis survivor model demonstrate that antibiotic treatment minimize the C. sakazakii infection induced effect on behaviour and signaling molecules involving in neuronal development, survival, and synaptic plasticity, but the consequences are long-term.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Meningite , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator de Crescimento Neural/metabolismo , Meningite/metabolismo , Transdução de Sinais , Hipocampo/metabolismo
3.
Front Mol Biosci ; 8: 637329, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277698

RESUMO

SARS-CoV-2, an etiological agent of COVID-19, has been the reason for the unexpected global pandemic, causing severe mortality and imposing devastative effects on public health. Despite extensive research work put forward by scientist around globe, so far, no suitable drug or vaccine (safe, affordable, and efficacious) has been identified to treat SARS-CoV-2. As an alternative way of improvising the COVID-19 treatment strategy, that is, strengthening of host immune system, a great deal of attention has been given to phytocompounds from medicinal herbs worldwide. In a similar fashion, the present study deliberately focuses on the phytochemicals of three Indian herbal medicinal plants viz., Mentha arvensis, Coriandrum sativum, and Ocimum sanctum for their efficacy to target well-recognized viral receptor protein through molecular docking and dynamic analyses. Nucleocapsid phosphoprotein (N) of SARS-CoV-2, being a pivotal player in replication, transcription, and viral genome assembly, has been recognized as one of the most attractive viral receptor protein targets for controlling the viral multiplication in the host. Out of 127 phytochemicals screened, nine (linarin, eudesmol, cadinene, geranyl acetate, alpha-thujene, germacrene A, kaempferol-3-O-glucuronide, kaempferide, and baicalin) were found to be phenomenal in terms of exhibiting high binding affinity toward the catalytic pocket of target N-protein. Further, the ADMET prediction analysis unveiled the non-tumorigenic, noncarcinogenic, nontoxic, non-mutagenic, and nonreproductive nature of the identified bioactive molecules. Furthermore, the data of molecular dynamic simulation validated the conformational and dynamic stability of the docked complexes. Concomitantly, the data of the present study validated the anti-COVID efficacy of the bioactives from selected medicinal plants of Indian origin.

4.
Prog Mol Biol Transl Sci ; 179: 77-92, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33785178

RESUMO

Engineering nucleases to achieve targeted genome editing has turned out to be a revolutionary means for manipulating the genetic content in diversified living organisms. For targeted genome editing, till to date, only three engineered nucleases exist viz. zinc finger nucleases, transcription activator-like effector nucleases and RNA-mediated nucleases (RGNs) (Cas nucleases) from the clustered regularly interspaced short palindromic repeat (CRISPR). Among, Cas9 nuclease has been considered as a simplest tool for efficient modification of endogenous genes in an extensive stretch of organisms, owing to its amenability to design guide RNA compatible to the sequence of new targets. Moreover, CRISPR/Cas system delivers a multipurpose RNA-guided DNA-targeting platform called as CRISPR interference (CRISPRi), as well as epigenetic modifications and high throughput screening in diverse organism including bacteria, all in a sequence explicit way. With these entire advancements, the present chapter illustrates the deployment of CRISPR/Cas9 in bacterial genome editing and removal of pathogens.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Bactérias/genética , Sistemas CRISPR-Cas/genética , Genoma Bacteriano , Humanos , RNA Guia de Cinetoplastídeos/genética
5.
Food Chem Toxicol ; 148: 111966, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33412235

RESUMO

BACKGROUND: COVID-19, the presently prevailing global public health emergency has culminated in international instability in economy. This unprecedented pandemic outbreak pressingly necessitated the trans-disciplinary approach in developing novel/new anti-COVID-19 drugs especially, small molecule inhibitors targeting the seminal proteins of viral etiological agent, SARS-CoV-2. METHODS: Based on the traditional medicinal knowledge, we made an attempt through molecular docking analysis to explore the phytochemical constituents of three most commonly used Indian herbs in 'steam inhalation therapy' against well recognized viral receptor proteins. RESULTS: A total of 57 phytochemicals were scrutinized virtually against four structural protein targets of SARS-CoV-2 viz. 3CLpro, ACE-2, spike glycoprotein and RdRp. Providentially, two bioactives from each of the three plants i.e. apigenin-o-7-glucuronide and ellagic acid from Eucalyptus globulus; eudesmol and viridiflorene from Vitex negundo and; vasicolinone and anisotine from Justicia adhatoda were identified to be the best hit lead molecules based on interaction energies, conventional hydrogen bonding numbers and other non-covalent interactions. On comparison with the known SARS-CoV-2 protease inhibitor -lopinavir and RdRp inhibitor -remdesivir, apigenin-o-7-glucuronide was found to be a phenomenal inhibitor of both protease and polymerase, as it strongly interacts with their active sites and exhibited remarkably high binding affinity. Furthermore, in silico drug-likeness and ADMET prediction analyses clearly evidenced the usability of the identified bioactives to develop as drug against COVID-19. CONCLUSION: Overall, the data of the present study exemplifies that the phytochemicals from selected traditional herbs having significance in steam inhalation therapy would be promising in combating COVID-19.


Assuntos
COVID-19/terapia , Compostos Fitoquímicos/administração & dosagem , Administração por Inalação , COVID-19/virologia , Simulação por Computador , Humanos , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia , SARS-CoV-2/isolamento & purificação , Vapor
6.
Mol Biosyst ; 13(12): 2489-2497, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29082410

RESUMO

Infectious diseases caused by bacterial pathogens pose a major concern to public health and, thus, greater attention must be given to providing insightful knowledge on host-pathogen interactions. There are several theories addressing the dynamics of complex mechanisms of host-pathogen interactions. The availability of an ample number of universally accepted model systems, including vertebrates, invertebrates, and mammalian cells, provides in-depth transcriptomics data to evaluate these complex mechanisms during host-pathogen interactions. Recent model system based proteomic studies have addressed the issues related to human diseases by establishing the protein profile of model animals that closely resemble the environment. As a result, model system based proteomics has been widely accepted as a powerful and effective approach to understand the highly complex host-pathogen interfaces at their protein levels. This review offers a snapshot of the contributions of selective model systems on host-bacterial pathogen interactions through proteomic approaches.


Assuntos
Infecções Bacterianas/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Proteínas/metabolismo , Proteômica/métodos , Animais , Humanos
7.
Artigo em Inglês | MEDLINE | ID: mdl-28932706

RESUMO

The enterobacterium, Klebsiella pneumoniae invades the intestinal epithelium of humans by interfering with multiple host cell response. To uncover a system-level overview of host response during infection, we analyzed the global dynamics of protein profiling in Caenorhabditis elegans using quantitative proteomics approach. Comparison of protein samples of nematodes exposed to K. pneumoniae for 12, 24, and 36 h by 2DE revealed several changes in host proteome. A total of 266 host-encoded proteins were identified by 2DE MALDI-MS/MS and LC-MS/MS and the interacting partners of the identified proteins were predicted by STRING 10.0 analysis. In order to understand the interacting partners of regulatory proteins with similar or close pI ranges, a liquid IEF was performed and the isolated fractions containing proteins were identified by LC-MS/MS. Functional bioinformatics analysis on identified proteins deciphered that they were mostly related to the metabolism, dauer formation, apoptosis, endocytosis, signal transduction, translation, developmental, and reproduction process. Gene enrichment analysis suggested that the metabolic process as the most overrepresented pathway regulated against K. pneumoniae infection. The dauer-like formation in infected C. elegans along with intestinal atrophy and ROS during the physiological analysis indicated that the regulation of metabolic pathway is probably through the involvement of mTOR. Immunoblot analysis supported the above notion that the K. pneumoniae infection induced protein mis-folding in host by involving PI3Kinase/AKT-1/mTOR mediated pathway. Furthermore, the susceptibility of pdi-2, akt-1, and mTOR C. elegans mutants confirmed the role and involvement of PI3K/AKT/mTOR pathway in mediating protein mis-folding which appear to be translating the vulnerability of host defense toward K. pneumoniae infection.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Klebsiella pneumoniae/patogenicidade , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose , Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Endocitose , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/fisiologia , Intestinos/microbiologia , Intestinos/patologia , Infecções por Klebsiella/veterinária , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Domínios e Motivos de Interação entre Proteínas , Proteoma/genética , Proteoma/metabolismo , Proteômica , Deficiências na Proteostase , Transdução de Sinais , Espectrometria de Massas em Tandem , Fatores de Transcrição/metabolismo
8.
Biomed Res Int ; 2016: 1289157, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27761465

RESUMO

The present investigation was deliberately aimed at evaluating the biofilm-forming ability of 63 clinical MRSA isolates recovered from pharyngitis patients through different phenotypic assays. The molecular detection of adhesion (icaA/icaD/icaB/icaC), adhesins (fnbA/fnbB, clfA, and cna), staphylococcal accessory regulator (sarA), and α-toxin (hla) genes was done by employing polymerase chain reaction (PCR). Out of 63 isolates, 49 (77.8%) were found slime positive by the Congo red agar (CRA) method and 44 (69.8%) as biofilm positive by the quantitative microtitre plate assays. The results of MATH assay showed that most of the test pathogens are hydrophilic in nature. The molecular investigation of biofilm-associated genes revealed that 84.13% (n = 53) of isolates were found positive for icaADBC genes. The fnbA and fnbB genes were present in 49 (77.8%) and 51 (81%) MRSA isolates, respectively. In addition, 58.7% (n = 37), 73% (n = 46), and 69.8% (n = 44) of the isolates harboured the clfA, cna, and hla genes, respectively. Further, nearly 81% (n = 51) of the isolates were found positive for the gene sarA and all the ica negative isolates were also negative for the gene. Furthermore, the results of in vivo adherence assay unveiled the factual commonness in the in vitro adherence method.


Assuntos
Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina , Faringite , Infecções Estafilocócicas/genética , Feminino , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/fisiologia , Faringite/genética , Faringite/microbiologia
9.
Int J Food Microbiol ; 237: 73-82, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27543817

RESUMO

The current study explores the in vitro and in vivo antibiofilm efficacy of morin against a leading foodborne pathogen-Listeria monocytogenes (LM). Minimum inhibitory concentration (MIC) of morin against LM strains was found to be 100µg/ml. The non-antibacterial effect of morin at its sub-MICs (6.25, 12.5 and 25µg/ml) was determined through growth curve and XTT assay. Morin at its sub-MICs demonstrated a significant dose dependent inhibitory efficacy against LM biofilm formation which was also evidenced through light, confocal and scanning electron microscopic analyses. However, morin failed to disperse the mature biofilm of LM even at its MIC. Our data also revealed the anti-virulence efficacy of morin, as it significantly inhibited the production of hemolysin and motility of LM. Concentration-dependent susceptibility of morin treated LM cells to normal human serum was observed. In vivo studies revealed that morin extended the lifespan of LM infected Caenorhabditis elegans by about 85%. Furthermore, the non-toxic nature and in vivo anti-adherence efficacy of morin were also ascertained through C. elegans-LM infection model. Overall, the data of the current study identifies morin as a promising antibiofilm agent and its suitability to formulate protective strategies against biofilm associated infections caused by LM.


Assuntos
Biofilmes/efeitos dos fármacos , Flavonoides/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caenorhabditis elegans , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/fisiologia , Listeriose/tratamento farmacológico , Testes de Sensibilidade Microbiana , Virulência/efeitos dos fármacos
10.
Food Funct ; 7(7): 3211-23, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27338631

RESUMO

In the present study, the effect of Lactic Acid Bacteria (LAB) was investigated at the molecular level using the model organism Caenorhabditis elegans against Klebsiella pneumoniae. Out of the 13 LAB screened, Lactobacillus casei displayed excellent protective efficacy by prolonging the survival of K. pneumoniae-infected nematodes. Pretreatment with L. casei significantly decreased bacterial colonization and rescued K. pneumoniae-infected C. elegans from various physiological impairments. The concomitant upregulation of key immune genes that regulate the TLR, RACK-1 as well as the p38 MAPK pathway rather than the IIS and ERK pathway suggested that the plausible immunomodulatory mechanism of L. casei could be by triggering the TLR, RACK-1 and p38 MAPK pathway. Furthermore, the hyper-susceptibility of L. casei treated loss-of-function mutants of the tol-1, RACK-1 and p38 MAPK pathway (sek-1 and pmk-1) to K. pneumoniae infection and gene expression analysis suggested that L. casei triggered a TLR mediated RACK-1 dependent p38 MAPK pathway to increase host resistance and protect nematodes against K. pneumoniae infection.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Infecções por Klebsiella/terapia , Lacticaseibacillus casei , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Klebsiella pneumoniae/crescimento & desenvolvimento , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , RNA Bacteriano/genética , Receptores Citoplasmáticos e Nucleares/genética , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/genética
11.
Pathog Dis ; 74(4): ftw017, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26945590

RESUMO

This study was intentionally focused on cyclo(l-leucyl-l-prolyl) (CLP), a cyclic dipeptide with myriad pharmaceutical significance, to explore its antivirulence efficacy against the predominant foodborne pathogen,Listeria monocytogenes(LM). Minimum inhibitory concentration (MIC) of CLP against LM ATCC 19111 was found to be 512 µg mL(-1) CLP at sub-MICs (64 128, 256 µg mL(-1)) demonstrated a profound non-bactericidal dose-dependent antibiofilm efficacy (on polystyrene and glass) against LM, which was further confirmed through confocal and scanning electron microscopic analysis (on stainless steel surface).In vitrobioassays divulged the phenomenal inhibitory efficacy of CLP towards various virulence traits of LM, specifically its overwhelming suppression of swimming and swarming motility. Data ofin vivoassay usingCaenorhabditis eleganssignified that the plausible mechanism of CLP could be by impeding the pathogen's initial adhesion and thereby attenuating the biofilm assemblage and its associated virulence. This was further confirmed by significant decrease in extracellular polymeric substance, autoaggregation, hydrophobicity index and extracellular DNA of the CLP-treated LM cells. Collectively, this study unveils the antivirulence efficacy of CLP against the Gram-positive foodborne pathogen and the strainBacillus amyloliquefaciensaugurs well to be a promising probiotic in controlling infections associated with LM.


Assuntos
Bacillus amyloliquefaciens/fisiologia , Biofilmes/efeitos dos fármacos , Dipeptídeos/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/fisiologia , Interações Microbianas , Peptídeos Cíclicos/farmacologia , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Dipeptídeos/biossíntese , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/biossíntese , Característica Quantitativa Herdável , Virulência/efeitos dos fármacos
12.
Artigo em Inglês | MEDLINE | ID: mdl-26297616

RESUMO

Malathion, an organophosphorus insecticide, is renowned for its inhibitory action on acetylcholinesterase (AChE) enzyme that eventually leads to widespread disturbance in the normal physiological and behavioral activities of any organism. Lactic acid bacteria (LAB) are still an underexploited and inexhaustible source of significant pharmaceutical thrust. In the present study, Caenorhabditis elegans was employed to identify and characterize the indigenous LAB isolated from different traditional food against malathion-induced toxicity. The results demonstrated that malathion at its LD50 concentration decreased various C. elegans physiological parameters such as survival, feeding, and locomotion. Among the screened isolates, L. casei exhibited an excellent protective efficacy against malathion-induced toxicity by increasing the level of AChE and thereby rescued all physiological parameters of C. elegans. In addition, short-term exposure and food choice assay divulged that L. casei could serve as a better food to protect C. elegans from noxious environment. The expression analysis unveiled that L. casei gavage upregulated the phase-II detoxification enzymes coding genes metallothioneins (mtl-1 and mtl-2) and glutathione-S-transferase (gst-8) and thereby eliminated malathion from the host system. Furthermore, the upregulation of ace-3 along with down-regulation of cyp35a in the nematodes supplemented with L. casei could be attributed to attenuate the malathion-induced physiological defects in C. elegans. Thus, the present study reports that an indigenous LAB-L. casei could serve as a promising protective agent against the harmful effects of pesticide.


Assuntos
Inibidores da Colinesterase/toxicidade , Inseticidas/toxicidade , Lacticaseibacillus casei/fisiologia , Malation/toxicidade , Desintoxicação Metabólica Fase II/fisiologia , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia
13.
Pathog Dis ; 73(5)2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25819035

RESUMO

The present study reports that Klebsiella pneumoniae (KP) killed the Caenorhabditis elegans as a consequence of an accumulation and proliferation of the pathogen inside the worms' intestine. The real-time PCR analysis of the genes responsible for vulval development (let-23) and egg laying (lin-29) in KP infected C. elegans confirmed the reproductive defects provoked by KP at the molecular level. In addition, the genetic analysis in N2 wild type, tol-1, sek-1 and pmk-1 mutants unveiled that KP attenuates the toll-dependent p38 mitogen-activated protein kinase (p38 MAPK) by chiefly inhibiting the production of antimicrobial factors such as nlp-29, lys-1 and C-type lectins. Conclusively, the surrendering of the host immune system appears to be attenuated by the toll-dependent p38 MAPK pathway regulation in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Caenorhabditis elegans/imunologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/imunologia , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...