Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 355: 124018, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697252

RESUMO

Fe and N co-doped walnut shell biochar (Fe,N-BC) was prepared through a one-pot pyrolysis procedure by using walnut shells as feedstocks, melamine as the N source, and iron (III) chloride as the Fe source. Moreover, pristine biochar (BC), nitrogen-doped biochar (N-BC), and α-Fe2O3-BC were synthesized as controls. All the prepared materials were characterized by different techniques and were used for the activation of peroxymonosulfate (PMS) for the degradation of sulfamethoxazole (SMX). A very high degradation rate for SMX (10 mg/L) was achieved with Fe,N-BC/PMS (0.5 min-1), which was higher than those for BC/PMS (0.026 min-1), N-BC/PMS (0.038 min-1), and α-Fe2O3-BC/PMS (0.33 min-1) under the same conditions. This is mainly due to the formation of Fe3C and iron oxides, which are very reactive for the activation of PMS. In the next step, Fe,N-BC was employed for the formation of a composite membrane structure by a liquid-induced phase inversion process. The synthesized ultrafiltration membrane not only exhibited high separation performance for humic acid sodium salt (HA, 98%) but also exhibited improved self-cleaning properties when applied for rhodamine B (RhB) filtration combined with a PMS solution cleaning procedure. Scavenging experiments revealed that 1O2 was the predominant species responsible for the degradation of SMX. The transformation products of SMX and possible degradation pathways were also identified. Furthermore, the toxicity assessment revealed that the overall toxicity of the intermediate was lower than that of SMX.


Assuntos
Carvão Vegetal , Juglans , Peróxidos , Sulfametoxazol , Juglans/química , Sulfametoxazol/química , Carvão Vegetal/química , Peróxidos/química , Ferro/química , Nitrogênio/química , Poluentes Químicos da Água/química
2.
Environ Sci (Camb) ; 10(3): 652-667, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38434174

RESUMO

Electrochemical wastewater treatment is a promising technique to remove recalcitrant pollutants from wastewater. However, the complexity of elucidating the underlying degradation mechanisms hinders its optimisation not only from a techno-economic perspective, as it is desirable to maximise removal efficiencies at low energy and chemical requirements, but also in environmental terms, as the generation of toxic by-products is an ongoing challenge. In this work, we propose a novel combined experimental and computational approach to (i) estimate the contribution of radical and non-radical mechanisms as well as their synergistic effects during electrochemical oxidation and (ii) identify the optimal conditions that promote specific degradation pathways. As a case study, the distribution of the degradation mechanisms involved in the removal of benzoic acid (BA) via boron-doped diamond (BDD) anodes was elucidated and analysed as a function of several operating parameters, i.e., the initial sulfate and nitrate content of the wastewater and the current applied. Subsequently, a multivariate optimisation study was conducted, where the influence of the electrode nature was investigated for two commercial BDD electrodes and a customised silver-decorated BDD electrode. Optimal conditions were identified for each degradation mechanism as well as for the overall BA degradation rate constant. BDD selection was found to be the most influential factor favouring any mechanism (i.e., 52-85% contribution), given that properties such as its boron doping and the presence of electrodeposited silver could dramatically affect the reactions taking place. In particular, decorating the BDD surface with silver microparticles significantly enhanced BA degradation via sulfate radicals, whereas direct oxidation, reactive oxygen species and radical synergistic effects were promoted when using a commercial BDD material with higher boron content and on a silicon substrate. Consequently, by simplifying the identification and quantification of underlying mechanisms, our approach facilitates the elucidation of the most suitable degradation route for a given electrochemical wastewater treatment together with its optimal operating conditions.

3.
Environ Pollut ; 347: 123705, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442825

RESUMO

The ongoing challenge of water pollution by contaminants of emerging concern calls for more effective wastewater treatment to prevent harmful side effects to the environment and human health. To this end, this study explored for the first time the implementation of single-crystal boron-doped diamond (BDD) anodes in electrochemical wastewater treatment, which stand out from the conventional polycrystalline BDD morphologies widely reported in the literature. The single-crystal BDD presented a pure diamond (sp3) content, whereas the three other investigated polycrystalline BDD electrodes displayed various properties in terms of boron doping, sp3/sp2 content, microstructure, and roughness. The effects of other process conditions, such as applied current density and anolyte concentration, were simultaneously investigated using carbamazepine (CBZ) as a representative target pollutant. The Taguchi method was applied to elucidate the optimal operating conditions that maximised either (i) the CBZ degradation rate constant (enhanced through hydroxyl radicals (•OH)) or (ii) the proportion of sulfate radicals (SO4•-) with respect to •OH. The results showed that the single-crystal BDD significantly promoted •OH formation but also that the interactions between boron doping, current density and anolyte concentration determined the underlying degradation mechanisms. Therefore, this study demonstrated that characterising the BDD material and understanding its interactions with other process operating conditions prior to degradation experiments is a crucial step to attain the optimisation of any wastewater treatment application.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Boro/química , Oxirredução , Diamante/química , Poluentes Químicos da Água/química , Eletrodos , Purificação da Água/métodos
4.
Sci Total Environ ; 899: 165535, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453707

RESUMO

In this study, novel walnut shell biochar-nano zero-valent iron nanocomposites (WSBC-nZVI) were synthesized using a combined pyrolysis/reduction process. WSBC-nZVI displayed a high removal efficiency (86 %) for carbamazepine (CBZ) compared with walnut shell biochar (70 %) and nano zero-valent iron (76 %) in the presence of persulfate (PS) (0.5 g/L catalyst, 10 mg/L CBZ, 1 mM persulfate). Subsequently, WSBC-nZVI was applied for the fabrication of the membrane using a phase inversion method. The membrane demonstrated an excellent removal efficiency of 91 % for CBZ in a dead-end system (2 mg/L CBZ, 1 mM persulfate). In addition, the effect of various operating conditions on the degradation efficiency in the membrane/persulfate system was investigated. The optimum pH was close to neutral, and an increase in CBZ concentration from 1 mg/L to 10 mg/L led to a drop in removal efficiency from 100 % to 24 %. The degradation mechanisms indicated that oxidative species, including 1O2, OH, SO4-, and O2-, all contribute to the degradation of CBZ, while the role of 1O2 is highlighted. The CBZ degradation products were also investigated, and the possible pathways and the predicted toxicity of intermediates were proposed. Furthermore, the practical use of the membrane was validated by the treatment of real wastewater.


Assuntos
Juglans , Nanocompostos , Poluentes Químicos da Água , Ferro , Poluentes Químicos da Água/análise
5.
Environ Res ; 220: 115249, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632884

RESUMO

Engineered nanomaterials (ENMs) have been introduced into the market for a wide range of applications. As per the literature review, the fabrication of new generations of ENMs is starting to comply with environmental, economic, and social criteria in addition to technical aspects to meet sustainability criteria. At this stage, identification of the appropriate criteria for the synthesis of ENMs is critical because the technologies already developed at the lab scales are being currently transferred to pilot and full scales. Hence, the development of scientific-based methodologies to identify, screen, and prioritize the involved criteria is highly necessary. In the present manuscript, a fuzzy-Delphi methodology is adopted to identify the main criteria and sub-criteria encompassing the sustainable fabrication of ENMs, and to explore the "degree of consensus" among the experts on the relative importance of the mentioned criteria. The "health and safety risks" respecting the equipment and the materials, solvent used, and availability of "green experts" were identified as the most critical criteria. Furthermore, although all the criteria were identified as being important, some criteria, such as "solvent" and "raw materials cost", raised a lower degree of consensus, indicating that various "degrees of uncertainties" still exist regarding the level of importance of the studied criteria.


Assuntos
Nanoestruturas , Projetos de Pesquisa , Tecnologia
6.
Environ Pollut ; 316(Pt 2): 120549, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336185

RESUMO

Photocatalysis has been considered a promising technology for the elimination of a wide range of pollutants in water. Various types of photocatalysts (i.e., homojunction, heterojunction, dual Z-scheme photocatalyst) have been developed in recent years to address the drawbacks of conventional photocatalysts, such as the large energy band gap and rapid recombination rate of photogenerated electrons and holes. However, there are still challenges in the design of photocatalytic reactors that limit their wider application for real (waste)water treatment, such as difficulties in their recovery and reuse from treated (waste)waters. 3D printing technologies have been introduced very recently for the immobilization of materials in novel photocatalytic reactor designs. The present review aims to summarize and discuss the advances and challenges in the application of various 3D printing technologies (i.e., stereolithography, inkjet printing, and direct ink writing) for the fabrication of stable photocatalytic materials for (waste)water treatment purposes. Furthermore, the limitations in the implementation of these technologies to design future generations of photocatalytic reactors have been critically discussed, and recommendations for future studies have been presented.

7.
Water Res ; 226: 119248, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323200

RESUMO

Microplastics (MPs) can adsorb antibiotics to form complex pollutants, which seriously threatens the health of freshwater ecosystems. Few studies have examined the combined pollution characteristics of microplastics (MPs) and antibiotics in restored freshwater ecosystems and their effects on the growth traits of the aquatic primary producers. We studied both the ecotoxicological effects of polyethylene (PE) MPs and the antibiotics sulfanilamide (sulfa, SA) on the structural (diversity etc.,) and functional (nutrient cycling etc.,) properties of water-plant-sediment ecosystems. The synergistic toxic effects of PE and SA resulted in a reduction in the chlorophyll content and chloroplast fluorescence. Meanwhile, PE and SA single/combined pollution stress inhibits the radial oxygen loss in roots, and activates the antioxidant defense system in leaves. The change in the growth response characteristics of Vallisneria natans (V. natans) under oxidative stress induced by single/combined pollution showed a dosage effect. The microbial compositions of the overlying water and sediment were significantly changed by the pollution exposure, as evidenced by the increased microbial diversity and altered microbial taxa distribution. An increase in the total concentrations of sulfa in the overlying water was accompanied by an increase in the relative abundances of resistance genes. PE-MPs significantly affected the removal of total nitrogen and antibiotics from the overlying water. The interaction between PE and SA affects ammonia and nitrite nitrogen exchange in water-sediment systems. Thus, this study investigated the effects of combined MP and antibiotics pollution on the growth state, metabolic function, microbial community structure and microbial diversity of the freshwater ecosystems. The mechanism underlying of the combined polyethylene-sulfanilamide (PE-SA) effect on the V. natans was revealed. In addition, the correlation between different environmental factors was analyzed, and a structural equation model was constructed. This study provides primary data for evaluating the ecological and environmental effects of combined PE-SA pollution and its possible risks. Moreover, it provides a reference index for the study of ecological wetland environments and phytoremediation.


Assuntos
Hydrocharitaceae , Poluentes Químicos da Água , Microplásticos , Ecossistema , Plásticos , Antibacterianos , Poluentes Químicos da Água/análise , Água Doce , Polietileno , Nitrogênio , Água , Sulfanilamidas
8.
Environ Pollut ; 307: 119586, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35680069

RESUMO

Numerous studies found the presence of persistent organic pollutants (POPs) in various environmental compartments, including air, water, and soil. POPs have been discovered in various industrial and agricultural products with severe environmental and human health consequences. According to the data, South Korea is a hotspot for POP pollution in the southern part of Asia; hence, South Korea has implemented the Stockholm Convention's National Implementation Plan (NIP) to address this worldwide issue. The purpose of this review is to assess the distribution pattern of POPs pollution in South Korea's atmosphere. According to findings, PAHs, PCBs, BFRs, and PBDEs significantly polluted the atmosphere of South Korea; however, assessing their exposure nationwide is difficult due to a shortage of data. The POPs temporal trend and meta-analysis disclosed no proof of a decrease in PAHs and BFRs residues in the atmosphere. However, POP pollution in South Korea tends to decrease compared to contamination levels in neighboring countries like Japan and China.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Atmosfera/análise , Monitoramento Ambiental , Poluentes Ambientais/análise , Éteres Difenil Halogenados/análise , Humanos , Poluentes Orgânicos Persistentes , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
9.
Molecules ; 27(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35630526

RESUMO

For applications related to the photocatalytic degradation of environmental contaminants, engineered nanomaterials (ENMs) must demonstrate not only a high photocatalytic potential, but also a low tendency to agglomeration, along with the ability to be easily collected after use. In this manuscript, a two-step process was implemented for the synthesis of ZnO, ZnO/Bentonite and the magnetic ZnO/γ-Fe2O3/Bentonite nanocomposite. The synthesized materials were characterized using various techniques, and their performance in the degradation of pharmaceutical active compounds (PhACs), including ciprofloxacin (CIP), sulfamethoxazole (SMX), and carbamazepine (CBZ) was evaluated under various operating conditions, namely the type and dosage of the applied materials, pH, concentration of pollutants, and their appearance form in the medium (i.e., as a single pollutant or as a mixture of PhACs). Among the materials studied, ZnO/Bentonite presented the best performance and resulted in the removal of ~95% of CIP (5 mg/L) in 30 min, at room temperature, near-neutral pH (6.5), ZnO/Bentonite dosage of 0.5 g/L, and under solar light irradiation. The composite also showed a high degree of efficiency for the simultaneous removal of CIP (~98%, 5 mg/L) and SMX (~97%, 5 mg/L) within 30 min, while a low degradation of ~5% was observed for CBZ (5 mg/L) in a mixture of the three PhACs. Furthermore, mechanistic studies using different types of scavengers revealed the formation of active oxidative species responsible for the degradation of CIP in the photocatalytic system studied with the contribution of h+ (67%), OH (18%), and ·O2- (10%), and in which holes (h+) were found to be the dominant oxidative species.


Assuntos
Bentonita , Óxido de Zinco , Carbamazepina , Catálise , Preparações Farmacêuticas , Sulfametoxazol , Luz Solar , Óxido de Zinco/química
10.
Sci Total Environ ; 825: 153871, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35176370

RESUMO

The present study investigates the kinetics and mechanisms of carbamazepine (CBZ) degradation using a novel UV/iodate (IO3-) system for the first time and explores the influence of process conditions on its degradation. UV/IO3- showed high degradation efficiencies in a wide range of pHs, especially under neutral and acidic conditions, indicating that the system can be considered as a promising method to deal with effluents under various pH conditions. Radical scavenging experiments show that both iodine radicals (IO, IO2 and IO3) and hydroxyl radicals play an important role in CBZ degradation. Furthermore, the combination of UV/IO3- with TiO2 was studied to explore the potential of the addition of IO3- to improve the efficiency of the conventional TiO2 photocatalytic system. Scavenging experiments indicated that iodine radicals (IO, IO2 and IO3) were mainly involved in the degradation of CBZ in the UV/IO3-/TiO2 system, and the reaction mechanism equations were proposed for the first time for the studied UV/IO3-/TiO2 system. Several degradation products and four possible pathways of CBZ degradation were also elucidated using ultra-high-performance liquid chromatography in combination with a quadrupole time-of-flight mass spectrometer (Q-TOF MS). Respirometric tests indicated that the treatment has a positive impact on biomass behavior during subsequent biological purification, highlighting that the developed IO3--assisted AOPs are eco-friendly.


Assuntos
Iodo , Poluentes Químicos da Água , Carbamazepina/análise , Iodatos , Iodetos , Cinética , Titânio/química , Água , Poluentes Químicos da Água/análise
11.
Toxics ; 9(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34437494

RESUMO

The growth of industrialization has led to an increase in the production of highly contaminated wastewater. Industrial wastewater contains highly complex compounds varying in characteristics and required to be treated before its discharge into a water medium from various industries. However, the efficiency of the treated wastewater from the toxicity reduction perspective is unclear. In order to overcome this barrier, toxicity assessment of the industrial wastewater before and after treatment is crucial. Thus, in this study, a scientometric analysis has been performed on the toxicity assessment of industrial wastewater and sludges, which have been reported in the literature. Web of Science (WoS) core collection database has been considered the main database to execute this analysis. Via the search of pre-researched keywords, a total number of 1038 documents were collected, which have been published from 1951 to 2020. Via CiteSpace software and WoS analyser, these documents went under analysis regarding some of the scientometry criteria, and the detailed results obtained are provided in this study. The total number of published documents on this topic is relatively low during such a long period of time. In conclusion, the need for more detailed contributions among the scientific and industrial communities has been felt.

12.
Sci Total Environ ; 782: 146781, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33848862

RESUMO

This study explores the efficiency and kinetics of the photoactivated periodate process for the degradation of 2,4-dichlorophenol (2,4-DCP) in water. The obtained results show that the degradation rate was considerably higher for UV/IO4- compared to UV irradiation alone. Pseudo first-order reaction rate kinetics were obtained for all process conditions. The pH did not have a significant impact on the decomposition of 2,4-DCP using photoactivated periodate. Therefore, the applied method can be used to treat (waste)water at various pH. By raising the initial concentration of periodate to 5 mM, the degradation rate increased, while it decreased again at a concentration of 8 mM. As the 2,4-DCP concentration increased, the removal rate decreased. The extent of degradation was observed to be proportional with the UV intensity. A mechanistic study revealed that iodine radicals dominated the degradation of 2,4-DCP by photoactivated periodate, whereas OH and O(3P) only played a minor role. At pH 5.0, all chlorine atoms in 2,4-DCP were released as chloride ions in the UV/IO4- process, hence reaching a total dechlorination. Finally, the presence of inorganic salts, even at high levels, did not significantly impact the degradation. According to the results achieved in this study, the UV/IO4- system can be considered as a valuable alternative to treat effluents containing chlorinated organic compounds such as pulp and paper mill effluents and brine (waste)water.

13.
Chemosphere ; 276: 130146, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33740648

RESUMO

The production of environmentally friendly nanostructured materials with well-defined properties is a major challenge. Characteristics of the nanomaterials such as dimensionality, size and morphology strongly affect their performance in various applications. Additionally, sustainability considerations require an acceptable level of efficiency while being economically feasible and environmentally benign. The use of ultrasonic irradiation (UI) is a green and powerful technology, which can be applied for the synthesis of a variety of nanostructured materials. This review critically discusses the progress made in the fabrication of environmentally benign engineered nanomaterials with various dimensionalities (i.e., zero, one, two, or three dimensions) assisted by UI. The evolution and current status in this area are further illustrated using a scientometric approach. Application of UI for the synthesis of nanostructured materials has been also assessed according to the main sustainability pillars including the performance and environmental compatibility, as well as the relevant economic and social considerations. The outlook as well as recommendations for future research has been also provided and discussed towards the promotion of sustainable nanomaterials synthesis and application in various fields.


Assuntos
Nanoestruturas
14.
NanoImpact ; 22: 100316, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-35559973

RESUMO

Application of nanomaterials for the treatment of effluents originated from various industrial and non-industrial sources, has been rapidly developed in recent decades. In this situation, there is a need for conclusive studies to identify the current status of the knowledge in this field and to promote the commercialization of such technologies by providing recommendations for future studies. In the present manuscript, a scientometric assessment on the progress made in this field has been performed and the results have been organized and discussed in terms of science statistics, research hotspots and trends, as well as the relevant sustainability aspects. Based on a set of keywords, identified through a pre-literature analysis, a total of 6539 documents were retrieved from the Web of Science (WoS) database and analyzed to achieve the main goals of this study. The results demonstrate that the studies in this field have been initiated since the beginning of the 2000s but were mainly performed in lab and pilot scales. Also, China and Iran were identified as the most contributing countries in this scientific area in terms of the number of publications. Among various types of engineered nanomaterials (ENMs), there has been especial attention for the application of iron-based nanomaterials as well as carbonaceous structures (such as graphene oxide and biochar). Besides, there are not still strong collaborations formed among researchers in this area worldwide. Regarding the research hotspots, the synthesis of green and sustainable nanomaterials (e.g., biosynthesis approaches) has received attention in recent years. The results can also demonstrate that the most widely studied pathway for the removal of pollutants from (waste)waters involves the adsorption of the pollutants using ENMs. Treatment of contaminants of emerging concern (CECs) as well as exploring the mechanisms involved in the treatment of contaminated (waste)waters using ENMs and the possible by-products are considered the current trends in the literature. Regarding the sustainability aspects of ENMs for (waste)water treatment, the results achieved in this study calls for in-depth sustainability studies, which consider parameters such as economic, environmental, and social aspects of nanomaterials utilization for (waste)water treatment purposes, besides the technical parameters, to push transferring such technologies from lab and pilot scales to large and real-scale applications.


Assuntos
Poluentes Ambientais , Nanoestruturas , Purificação da Água , Adsorção , Nanoestruturas/uso terapêutico , Águas Residuárias
15.
Environ Pollut ; 267: 115501, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32892013

RESUMO

An upsurge in global population due to speedy urbanization and industrialization is facing significant challenges such as rising energy-demand, enormous waste-generation and environmental deterioration. The waste-to-energy nexus based on the 5R principle (Reduce, Reuse, Recycle, Recovery, and Restore) is of paramount importance in solving these Gordian knots. This review essentially concentrates on latest advancements in the field of 'simultaneous waste reduction and energy production' technologies. The waste-to-energy approaches (thermal and biochemical) for energy production from the agricultural residues are comprehensively discussed in terms environmental, techno-economic, and policy analysis. The review will assess the loopholes in order to come up with more sophisticated technologies that are not only eco-friendly and cost-effective, but also socially viable. The waste-to-energy nexus as a paradigm for sustainable development of restoring waste is critically discussed considering future advancement plans and agendas of the policy-makers.


Assuntos
Desenvolvimento Sustentável , Gerenciamento de Resíduos , Agricultura , Fenômenos Físicos , Urbanização
16.
J Environ Manage ; 254: 109800, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31739091

RESUMO

Treatment of highly polluted pharmaceutical effluents is a major challenge all over the world for technical and economic considerations. In this study, scientometric study is performed on the application of various methods for the treatment of pharmaceutical effluents to explore further developments. In this regard, a total of 1964 documents were retrieved from the Web of Science (WoS) database using a set of relevant keywords to cover all published documents. The extracted documents were subjected to scientometric study including the contributed authors, publications, citations received, contributing countries and institutions as well as the subject categories. From the data retrieved, the status of scientific knowledge on the subject history and current trends were identified and scientific gaps were critically discussed. Publications in this area started to appear since the sixties and were considerably promoted around the beginning of 2000s. Scientific publications of years 1960-2018 followed sigmoidal trend. It was found that leading countries are China and the United States in terms of scientific output on treatment technologies for pharmaceutical effluents. Among the active journals published, "Water Research" has received the most citations. A detailed discussion on the science and developments in this field is provided including the potential applications of scientometry.


Assuntos
Bibliometria , Preparações Farmacêuticas , China , Bases de Dados Factuais , Tecnologia , Estados Unidos
17.
J Environ Manage ; 247: 462-473, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31254761

RESUMO

In the current global situation, the release of large amounts of potential effluents into the environment is considered as one of the most important and challenging issues. Innovations in the treatment methods to deal with this problem are among the research priorities within the scientific communities. Even though innumerable methods including physicochemical and biological have been used, yet no proper sustainability of the methods have been introduced. Membrane bioreactors (MBRs) have gained world-wide attention in recent years, but still there is no report in the literature to map the global research on this subject. The present manuscript describes a scientometric study on the global trend on the application of MBRs during the period 1991-2018 by employing variables such as: (1) distribution of documents over the adopted duration, (2) type of documents in this area, (3) rate of contribution among the different countries, (4) rate of cooperation among the authors, (5) frequency of the keywords co-occurring, (6) cited authors, (7) cited journals, (8) the frequency of categories appeared and (9) the cited documents. A total of 2452 bibliographic records from the Web of Science database were retrieved and analysed to generate results, thereby to create geospatial maps for a better understanding. The findings reveal an increase in the number of papers published in the world, especially China and USA being the top. The existing studies in MBRs research focus mainly on subject categories of the performance and fouling as the main criteria of the sustainable application of MBRs. This study therefore, provides an extensive understanding about the trends and research patterns of MBRs efforts worldwide.


Assuntos
Membranas Artificiais , Eliminação de Resíduos Líquidos , Reatores Biológicos , China , Indústrias
18.
Environ Int ; 125: 261-276, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30731376

RESUMO

Application of engineered nanomaterials for the treatment of industrial effluents and to deal with recalcitrant pollutants has been noticeably promoted in recent years. Laboratory, pilot and full-scale studies emphasize the potential of this technology to offer promising treatment options to meet the future needs for clean water resources and to comply with stringent environmental regulations. The technology is now in the stage of being transferred to the real applications. Therefore, the assessment of its performance according to sustainability criteria and their incorporation into the decision-making process is a key task to ensure that long term benefits are achieved from the nano-treatment technologies. In this study, the importance of sustainability criteria for the conventional and novel technologies for the treatment of industrial effluents was determined in a general approach assisted by a fuzzy-Delphi method. The criteria were categorized in technical, economic, environmental and social branches and the current situation of the nanotechnology regarding the criteria was critically discussed. The results indicate that the efficiency and safety are the most important parameters to make sustainable choices for the treatment of industrial effluents. Also, in addition to the need for scaling-up the nanotechnology in various stages, the study on their environmental footprint must continue in deeper scales under expected environmental conditions, in particular the synthesis of engineered nanomaterials and the development of reactors with the ability of recovery and reuse the nanomaterials. This paper will aid to select the most sustainable types of nanomaterials for the real applications and to guide the future studies in this field.


Assuntos
Recuperação e Remediação Ambiental/métodos , Nanotecnologia , Águas Residuárias , Purificação da Água/métodos , Poluentes Ambientais , Recuperação e Remediação Ambiental/normas , Indústrias , Nanoestruturas , Nanotecnologia/normas , Águas Residuárias/análise , Purificação da Água/normas
19.
Ecotoxicol Environ Saf ; 148: 813-824, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29197796

RESUMO

Synthesis of the various types of engineered nanomaterials has gained a huge attention in recent years for various applications. Copper based nanomaterials are a branch of this category seem to be able to provide an efficient and cost-effective way for the treatment of the persistent effluents. The present work aimed to study the various parameters may involve in the overall performance of the copper based nanomaterials for environmental clean-up purposes. To this end, the related characteristics of copper based nanomaterials and their effects on the nanomaterials reactivity and the environmental and operating parameters have been critically reviewed. Toxicological study of the copper based nanomaterials has been also considered as a factor with high importance for the selection of a typical nanomaterial with optimum performance and minimum environmental and health subsequent effects.


Assuntos
Cobre/química , Descontaminação/métodos , Recuperação e Remediação Ambiental/métodos , Nanoestruturas/química , Cobre/toxicidade , Humanos , Nanoestruturas/toxicidade , Propriedades de Superfície
20.
Ecotoxicol Environ Saf ; 114: 326-42, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24953005

RESUMO

Economic benefits of the pulp and paper industry have led it to be one of the most important industrial sections in the world. Nevertheless, in recent years, pulp and paper mills are facing challenges with the energy efficiency mechanisms and management of the resulting pollutants, considering the environmental feedbacks and ongoing legal requirements. This study reviews and discusses the recent developments of affordable methods dealing with pulp and paper mill wastewaters. To this end, the current state of the various processes used for pulp and paper production from virgin or recovered fibers has been briefly reviewed. Also, the relevant contaminants have been investigated, considering the used raw materials and applied techniques as the subject for further discussion about the relevant suitable wastewater treatment methods. The results of the present study indicated that adopting the integrated methods, alongside a combination of biological (e.g., anaerobic digestion) and physicochemical (e.g., novel Fenton reactions) treatment methods, can be environmentally and economically preferable to minimize environmental contaminants and energy recycling.


Assuntos
Resíduos Industriais , Papel , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Indústrias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...