Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Breath Res ; 16(1)2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34731836

RESUMO

Significant progress in development of noninvasive diagnostic tools based on breath analysis can be expected if one employs a real-time detection method based on finding a spectral breath profile which would contain some energy characteristics of the analyzed gas mixture. Using the fundamental energy parameters of a quantum system, it is possible to determine with a high accuracy its quantitative and qualitative composition. Among the most efficient tools to measure energy characteristics of quantum systems are sensors based on Yanson point contacts. This paper reports the results of serotonin and melatonin detection as an example of testing the human hormonal background with point-contact sensors, which have already demonstrated their high efficiency in detecting carcinogenic strains ofHelicobacter pyloriand selective detection of complex gas mixtures. When comparing the values of serotonin and melatonin with the characteristic parameters of the spectral profile of the exhaled breath of each patient, high correlation dependences of the concentration of serotonin and melatonin with a number of characteristic parameters of the response curve of the point-contact sensor were found. The performed correlation analysis was complemented with the regression analysis. As a result, empiric regression relations were proposed to realize in practice the new non-invasive breath test for evaluation of the human hormonal background. Registration of the patient's breath profile using point-contact sensors makes it possible to easily monitor the dynamics of changes in the human hormonal background and perform a quantitative evaluation of serotonin and melatonin levels in the human body in real time without invasive interventions (blood collection) and expensive equipment or reagents.


Assuntos
Testes Respiratórios , Melatonina , Testes Respiratórios/métodos , Expiração , Corpo Humano , Humanos , Serotonina
2.
Beilstein J Nanotechnol ; 11: 1631-1643, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178548

RESUMO

Of all modern nanosensors using the principle of measuring variations in electric conductance, point-contact sensors stand out in having a number of original sensor properties not manifested by their analogues. The nontrivial nature of point-contact sensors is based on the unique properties of Yanson point contacts used as the sensing elements. The quantum properties of Yanson point contacts enable the solution of some of the problems that could not be solved using conventional sensors measuring conductance. In the present paper, we demonstrate this by showing the potential of quantum point-contact sensors to selectively detect components of a gas mixture in real time. To demonstrate the high efficiency of the proposed approach, we analyze the human breath, which is the most complex of the currently known natural gas mixtures with extremely low concentrations of its components. Point-contact sensors allow us to obtain a spectroscopic profile of the mixture. This profile contains information about the complete set of energy interactions occurring in the point contact/breath system when the breath constituents adsorb to and desorb from the surface of the point-contact conduction channel. With this information we can unambiguously characterize the analyzed system, since knowing the energy parameters is key to successfully identifying and modeling the physicochemical properties of various quantum objects. Using the point-contact spectroscopic profile of a complex gas mixture it is possible to get a functional dependence of the concentration of particular breath components on the amplitude of the sensor output signal. To demonstrate the feasibility of the proposed approach, we analyze the point-contact profiles from the breath of several patients and compare them with the concentrations of serotonin and cortisol in the body of each patient. The obtained results demonstrate that the proposed methodology allows one to get an effective calibration function for a non-invasive analysis of the level of serotonin and cortisol in the human body using the point-contact breath test. The present study indicates some necessary prerequisites for the design of fast detection methods using differential sensor analysis in real time, which can be implemented in various areas of science and technology, among which medicine is one of the most important.

3.
J Breath Res ; 9(4): 047111, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26669802

RESUMO

State-of-the-art methods for non-invasive detection of the Helicobacter pylori (H. pylori) infection have been considered. A reported global tendency towards a non-decreasing prevalence of H. pylori worldwide could be co-influenced by the functional limitations of urea breath tests (UBTs), currently preferred for the non-invasive recognition of H. pylori in a clinical setting. Namely, the UBTs can demonstrate false-positive or false-negative results. Within this context, limitations of conventional clinically exploited H. pylori tests have been discussed to justify the existing need for the development of a new generation of breath tests for the detection of H. pylori and the differentiation of pathogenic and non-pathogenic strains of the bacterium. This paper presents the results of a pilot clinical study aimed at evaluating the development and diagnostic potential of a new method based on the detection of the non-urease products of H. pylori vital activity in exhaled gas. The characteristics of breath of adolescents with H. pylori-positive and H. pylori-negative functional dyspepsia, together with a consideration of the cytotoxin-associated gene A (CagA) status of H. pylori-positive subjects, have been determined for the first time using innovative point-contact nanosensor devices based on salts of the organic conductor tetracyanoquinodimethane (TCNQ). The clinical and diagnostic relevance of the response curves of the point-contact sensors was assessed. It was found that the recovery time of the point-contact sensors has a diagnostic value for differentiation of the H. pylori-associated peptic ulcer disease. The diagnostically significant elongation of the recovery time was even more pronounced in patients infected with CagA-positive H. pylori strains compared to the CagA-negative patients. Taking into account the operation of the point-contact sensors in the real-time mode, the obtained results are essential prerequisites for the development of a fast and portable breath test for non-invasive detection of cytotoxic CagA strains of H. pylori infection. The relaxation time of the point-contact nanosensors could be selected as a diagnostic criterion for non-invasive determination of H. pylori-associated destructive lesions of the gastroduodenal area in adolescents, using the point-contact spectroscopic concept of breath analysis. This can subsequently be implemented into a 'test-and-treat' approach for the management of uninvestigated dyspepsia in populations with a high prevalence of H. pylori (according to the Maastricht III and IV Consensus recommendations).


Assuntos
Testes Respiratórios/métodos , Helicobacter pylori/isolamento & purificação , Adolescente , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Dispepsia/complicações , Dispepsia/epidemiologia , Ensaio de Imunoadsorção Enzimática , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/epidemiologia , Infecções por Helicobacter/microbiologia , Humanos , Nitrilas/metabolismo , Úlcera Péptica/complicações , Ureia/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...