Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 5: 14734, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26439169

RESUMO

High-density micro-circle patterned Si substrates were successfully fabricated for the direct overgrowth of thick AlN templates by using NH3 pulsed-flow multilayer AlN growth and epitaxial lateral overgrowth techniques. The experimental results show that an 8-µm-thick AlN template was grown at a very high growth rate on the substrates. The AlN template had full widths at half maximum of 0.23° and 0.37° for the (002) and (102) reflection planes in X-ray diffraction rocking curves. Atomic force microscopy and transmission electron microscopy confirmed that the roughness of the surface was low (3.5 nm) and the dislocation density was very low (1.5 × 10(8) cm(-2) (screw), 3.7 × 10(8) (edge) cm(-2)).

2.
Opt Express ; 23(13): 16511-6, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26191662

RESUMO

We have studied trap centers and nonradiative (NRR) recombination centers in a Ba3Si6O12N2:Eu2+ (BSON), one of promising materials for efficient and stable phosphors in white LED lamp applications. The energy distribution of four trap centers was obtained by thermo-luminescence (TL) with the excitation energy of 5.59eV. By superposing a below-gap excitation light of 1.77eV and observing the intensity change of the 5d-4f emission of Eu2+ centered at 2.36eV in our two-wavelength excited photoluminescence (TWEPL) measurement, both transient and steady state enhancement were observed. Such peculiar behavior of photo-stimulation is attributed to the coexistence of trap centers and NRR centers: the photoexcitation of electrons from trap centers generates the transient component, while that from NRR centers maintains the steady state component. An optical detection of relatively faint contribution of defects became possible in order to improve further the reliability and efficiency of phosphor materials.

3.
Nanoscale Res Lett ; 9(1): 267, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24948890

RESUMO

Electrospinning is a versatile technique, which can be used to generate nanofibers from a rich variety of materials. We investigate the variation of a zinc oxide (ZnO)-polyvinylpyrrolidone (PVP) composite structure in morphology by electrospinning from a series of mixture solutions of ZnO sol-gel and PVP. Calcination conditions for the crystallization of ZnO nanofibers and removal of the PVP component from the ZnO-PVP composite nanofibers were also studied. The progression of the ZnO-PVP composite structure from grains to nanofibers was observed, and ZnO-PVP nanofibers as thin as 29.9 ± 0.8 nm on average were successfully fabricated. The size of the resultant ZnO-PVP composite nanofibers was considerably affected by two parameters: the concentrations of zinc acetate and PVP in the precursor solution. The concentration of zinc acetate particularly influenced the diameter distribution of the ZnO-PVP nanofibers. The ZnO-PVP nanofibers could be subsequently converted into ZnO nanofibers of a pure wurtzite phase via calcination in air at 500°C for 2 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...