Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 350: 141051, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159730

RESUMO

Mixed-matrix membranes (MMMs) with an ideal polymer/hydrophilic flux enhancer interface considerably recuperates the separation and purification performance of membrane. In this direction, a novel CoFe2O4 functionalized natural clay-bentonite (CoFe2O4@BT) material as a compatible flux enhancer was synthesized for preparation of mixed matrix based in polyethersulfone (PES) matrix. Here, the influences of CoFe2O4@BT on the morphology and performance of the MMMs membranes were systematically investigated using various analytical techniques. Meanwhile, the water flux and sepration eficiency of the CoFe2O4@BT-PES membranes significantly enhanced due to the incorporation of CoFe2O4@BT that altered hydrophilicity, pore and surface characteristic features. The water flux as well as separation efficiency range up to 95%, 94.69%, 94.16% of Congo red (CR), Crystal violet (CV), and humic acid (HA) respectively. Meanwhile, the fouling parameters demonstrated that the CoFe2O4@BT-PES membranes exhibited better antifouling property in the long term experiment comparing with commercial polyamide membrane. CoFe2O4@BT material incorporated membranes showed less decline ratio and a better recovery ratio. The high rejection of dyes with a high permeation flux of the newly designed membranes indicated an amazing possibility for dye purification. In this study, a potential dye mechanism for composite membranes impacted by synthetic CoFe2O4@BT was also put forth. Within the context of application considerations for environmental protection, new materials stock in membranes show good potential for the separation of different organic contaminants.


Assuntos
Bentonita , Polímeros , Sulfonas , Purificação da Água , Águas Residuárias , Membranas Artificiais , Purificação da Água/métodos , Corantes/química , Água/química
2.
RSC Adv ; 12(15): 9101-9111, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35424879

RESUMO

Today, the development of functional nanostructured materials with specified morphologies utilizing environmentally friendly techniques is a very appealing topic in materials chemistry. Much emphasis has recently been paid to the utilization of biomass to make functional carbonaceous materials of varying forms, specifically carbon helices, with greater implications for the environment, economy, and society. A metal-catalyzed chemical vapour deposition technique has been developed for the fabrication of such carbon helices from nonrenewable hydrocarbons. Also, functionalization approaches were seen to necessitate high temperatures, hazardous gases, and multi-step processes. Herein, we have synthesized tendril-like functional carbon helices (HTCs) from toxic bio-weed, Parthenium hysterophorus as the carbon source by a greener solvothermal method employing deep eutectic solvent (DES) as both soft template and catalyst. Further, for the first time by taking advantage of the in-built chemical functionalities, HTCs were physically activated in an inert atmosphere at 900 °C (AHC) and functionalized with manganese oxide at room temperature by employing DES. Furthermore, the materials were characterized using FE-SEM, EDX, FT-IR, XRD, and BET analysis, where a surface area of 313.12 m2 g-1 was achieved with a robust removal of 99.68% of methylene blue (MB) dye with a flux rate of 7432.71 LMH in a simulated continuous flow system. The obtained material was also evaluated for its specificity towards contaminant removal from an aqueous medium. Thus, Mn3O4/AHC membranes exhibited great promise as an easy-to-use filter for organic contaminant cleanup, with about 91% rejection of MB even at the end of the 10th cycle, indicating its potential.

3.
Chemosphere ; 259: 127421, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32603965

RESUMO

Nanocomposites with ultrahigh adsorption capabilities are highly desired for efficient wastewater remediation. Unfortunately, most of the nanomaterial based adsorbents showing inevitable limitation such as leaching and agglomeration led to the emerging field of carbonaceous hybrid materials with nanocomposites. Herein, we demonstrated a simple and low-temperature hydrothermal assisted preparation of Fe-Al based nanocomposites immobilized using carbon spheres. Towards this, we have approached two different routes one is hybridizing with nanocomposite and another is doping on the surface of the carbon spheres. Iron doping played a dual-faceted role of active site for robust adsorption as well as induce magnetic property to the composites. The micro-cleaners have been extensively characterized for their physicochemical properties and adsorption capacities using FTIR, Raman, XRD, BET isotherms and XPS techniques. Remarkably, microcleaners shows robust adsorption where >99% removal was obtained within 10 min for 50 mg L-1 concentrated Eriochrome Black T (EBT) dye using 0.01 g of materials. Further, adsorption data followed the pseudo second order kinetics while the equilibrium data fitted perfectly into the Langmuir adsorption equation. As synthesized user friendly microcleaner (HTC-2) exhibits maximum adsorption capacity (qmax) of 564.97 mg g-1 for EBT dye at pH 4. Hence, the preliminary results highlight the potential of the composites to be used in pretreatment steps of industry effluents.


Assuntos
Corantes/química , Nanocompostos/química , Poluentes Químicos da Água/química , Adsorção , Ânions , Compostos Azo , Carbono , Concentração de Íons de Hidrogênio , Ferro , Cinética , Águas Residuárias , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...