Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(1): eadd5239, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598989

RESUMO

A large body of knowledge about magnetism is attained from models of interacting spins, which usually reside on magnetic ions. Proposals beyond the ionic picture are uncommon and seldom verified by direct observations in conjunction with microscopic theory. Here, using inelastic neutron scattering to study the itinerant near-ferromagnet MnSi, we find that the system's fundamental magnetic units are interconnected, extended molecular orbitals consisting of three Mn atoms each rather than individual Mn atoms. This result is further corroborated by magnetic Wannier orbitals obtained by ab initio calculations. It contrasts the ionic picture with a concrete example and presents an unexplored regime of the spin waves where the wavelength is comparable to the spatial extent of the molecular orbitals. Our discovery brings important insights into not only the magnetism of MnSi but also a broad range of magnetic quantum materials where structural symmetry, electron itinerancy, and correlations act in concert.

2.
Phys Rev Lett ; 129(14): 147202, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36240411

RESUMO

Na_{2}Co_{2}TeO_{6} is a proposed approximate Kitaev magnet, yet its actual magnetic interactions are elusive due to a lack of knowledge on the full excitation spectrum. Here, using inelastic neutron scattering and single crystals, we determine the system's temperature-dependent magnetic excitations over the entire Brillouin zone. Without committing to specific models, we unveil a distinct signature of the third-nearest-neighbor coupling in the spin waves, which signifies the associated distance as an emerging effective link in the ordered state. The presence of at least six nonoverlapping spin-wave branches is at odds with all models proposed to date. Above the ordering temperature, persisting dynamic correlations can be described by equal-time magnetic structure factors of a hexagonal cluster, which reveal the leading instabilities. Our result sets definitive constraints on theoretical models for Na_{2}Co_{2}TeO_{6} and provides new insight for the materialization of the Kitaev model.

3.
Nat Commun ; 12(1): 2306, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863905

RESUMO

Novel effects induced by nonmagnetic impurities in frustrated magnets and quantum spin liquid represent a highly nontrivial and interesting problem. A theoretical proposal of extended modulated spin structures induced by doping of such magnets, distinct from the well-known skyrmions has attracted significant interest. Here, we demonstrate that nonmagnetic impurities can produce such extended spin structures in h-YMnO3, a triangular antiferromagnet with noncollinear magnetic order. Using inelastic neutron scattering (INS), we measured the full dynamical structure factor in Al-doped h-YMnO3 and confirmed the presence of magnon damping with a clear momentum dependence. Our theoretical calculations can reproduce the key features of the INS data, supporting the formation of the proposed spin textures. As such, our study provides the first experimental confirmation of the impurity-induced spin textures. It offers new insights and understanding of the impurity effects in a broad class of noncollinear magnetic systems.

4.
Phys Rev Lett ; 122(1): 017001, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012685

RESUMO

With spin-orbit coupling, both local-moment magnetism and itinerant electrons are expected to behave anisotropically in spin space, but such effects' influence on the formation of unconventional superconductivity has been hitherto unexplored. Here, in an iron-based superconductor, Sr_{1-x}Na_{x}Fe_{2}As_{2}, we report spectroscopic evidence that itinerant electrons "prefer" to be assisted by c-axis polarized magnetic excitations in their formation of superconducting Cooper pairs, against the polarization of the local-moment excitations. Our result naturally explains why the superconductivity competes strongly with the tetragonal magnetic phase in this material, and provides a fresh view on how to make a good superconductor out of a magnetic "Hund's metal."

5.
Phys Rev Lett ; 119(1): 017201, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28731738

RESUMO

We investigate the magnetic dynamics in the spinel-type vanadium oxide MnV_{2}O_{4}. Inelastic neutron scattering around 10 meV and a Heisenberg model analysis have revealed that V^{3+} spin-wave modes exist at a lower-energy region than previously reported. The scattering around 20 meV cannot be reproduced with the spin-wave analysis. We propose that this scattering could originate from the spin-orbital coupled excitation. This scattering is most likely attributable to V^{3+} spin-wave modes, entangled with the orbital hybridization between t_{2g} orbitals.

6.
Phys Chem Chem Phys ; 16(31): 16563-72, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24984893

RESUMO

The location of hydrogen within Ti-Cr-V-Mo alloys has been investigated during hydrogen absorption and desorption using in situ neutron powder diffraction and inelastic neutron scattering. Neutron powder diffraction identifies a low hydrogen equilibration pressure body-centred tetragonal phase that undergoes a martensitic phase transition to a face-centred cubic phase at high hydrogen equilibration pressures. The average location of the hydrogen in each phase has been identified from the neutron powder diffraction data although inelastic neutron scattering combined with density functional theory calculations show that the local structure is more complex than it appears from the average structure. Furthermore the origin of the change in dissociation pressure and hydrogen trapping on cycling in Ti-Cr-V-Mo alloys is discussed.

7.
J Phys Condens Matter ; 25(28): 286005, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23793164

RESUMO

The magnetic structure of the metallic antiferromagnet Ag2NiO2 with the Néel temperature TN = 56 K has been investigated by means of a neutron diffraction technique using a powder sample in the temperature range between 5 and 65 K. The antiferromagnetic (AF) diffraction peaks are clearly observed below TN and can be indexed with the propagation vector [Formula: see text]. Based on the results of both a representational analysis and a Rietveld refinement of the magnetic peaks, the AF spin structure is determined as an A-type AF structure with ml = m0cos(2πk ⋅l), where ml is the moment at the lth Ni(3+) site and m0 = (0.31,0,0.65) µB at 5 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...