Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 11(24): 1990-4, 2001 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-11747828

RESUMO

Seven Sm proteins, termed B/B', D1, D2, D3, E, F, and G, assemble in an ordered manner onto U snRNAs to form the Sm core of the spliceosomal snRNPs U1, U2, U4/U6, and U5. The survival of motor neuron (SMN) protein binds to Sm proteins and mediates in the context of a macromolecular (SMN-) complex the assembly of the Sm core. Binding of SMN to Sm proteins is enhanced by modification of specific arginine residues in the Sm proteins D1 and D3 to symmetrical dimethylarginines (sDMAs), suggesting that assembly might be regulated at the posttranslational level. Here we provide evidence that the previously described pICln-complex, consisting of Sm proteins, the methyltransferase PRMT5, pICln, and two novel factors, catalyzes the sDMA modification of Sm proteins. In vitro studies further revealed that the pICln complex inhibits the spontaneous assembly of Sm proteins onto a U snRNA. This effect is mediated by pICln via its binding to the Sm fold of Sm proteins, thereby preventing specific interactions between Sm proteins required for the formation of the Sm core. Our data suggest that the pICln complex regulates an early step in the assembly of U snRNPs, possibly the transfer of Sm proteins to the SMN-complex.


Assuntos
Canais de Cloreto/metabolismo , Canais Iônicos , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Animais , Catálise , Células HeLa , Humanos , Metilação , Ligação Proteica , Proteínas de Xenopus , Xenopus laevis
2.
Biochem Soc Trans ; 29(Pt 2): 15-26, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11356120

RESUMO

The spliceosome is a macromolecular machine that carries out the excision of introns from eukaryotic pre-mRNAs and splicing together of exons. Four large RNA-protein complexes, called the U1, U2, U4/U6 and U5 small nuclear ribonucleoprotein particles (snRNPs), and some non-snRNP proteins assemble around three short conserved sequences within the intron in an ordered manner to form the active spliceosome. We aim to provide insight into the molecular details of the mechanism of pre-mRNA splicing through crystallographic studies of the snRNPs. We have solved the X-ray crystal structure of some snRNP proteins as part of either protein-protein complexes or RNA-protein complexes. These structures have provided an important insight into the overall architecture of the U1 and U2 snRNPs and the mechanisms of RNA-protein and protein-protein recognition.


Assuntos
Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/química , Spliceossomos/metabolismo , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Éxons/genética , Humanos , Íntrons/genética , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Spliceossomos/genética
3.
Nucleic Acids Res Suppl ; (1): 275-6, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-12836371

RESUMO

The first important step in pre-mRNA splicing is the recognition of the 5' splice site by the U1 snRNP. It consists of U1 snRNA and 10 protein subunits. We have reconstituted the U1 snRNP from all its ten proteins produced in E. coli and U1 snRNA transcribed in vitro. We have used nano spray time-of-flight (TOF) mass spectrometer in order to characterise the reconstituted U1 snRNP and its sub-assemblies which lack one of more subunits. The reconstituted U1 snRNP and its variants remained intact as multiply charged ions within the mass spectrometer and their mass was determined. By increasing collision energy subparticles are also observed. This method provides information not only about the stoichiometry of subunits within the complex but also about subsets of interacting proteins.


Assuntos
Ribonucleoproteína Nuclear Pequena U1/química , Subunidades Proteicas , Proteínas Recombinantes/química , Ribonucleoproteína Nuclear Pequena U1/genética , Espectrometria de Massas por Ionização por Electrospray , Spliceossomos/química
4.
Curr Opin Struct Biol ; 9(2): 222-30, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10322216

RESUMO

The spliceosome is a macromolecular assembly that carries out the excision of introns from nuclear pre-mRNAs. It consists of four large RNA-protein complexes, called the U1, U2, U4/U6 and U5 small nuclear ribonucleoproteins (snRNPs), and many protein factors. Crystal structures of seven protein components and fragments of the U1 and U2 small nuclear RNAs have been determined in the form of RNA-protein and protein-protein complexes. Together with electron microscopy studies of the snRNPs, these structures have begun to provide important insights into the architecture of the snRNPs and the mechanisms of RNA-protein and protein-protein recognition.


Assuntos
Ribonucleoproteínas Nucleares Pequenas/química , Spliceossomos/química , Sequência de Bases , Humanos , Substâncias Macromoleculares , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , RNA/química , RNA/ultraestrutura , Ribonucleoproteínas Nucleares Pequenas/ultraestrutura , Spliceossomos/ultraestrutura
5.
Cell ; 96(3): 375-87, 1999 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-10025403

RESUMO

The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F, and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs (snRNAs). These proteins share a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. Crystal structures of two Sm protein complexes, D3B and D1D2, show that these proteins have a common fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta sheet, and the D1D2 and D3B dimers superpose closely in their core regions, including the dimer interfaces. The crystal structures suggest that the seven Sm proteins could form a closed ring and the snRNAs may be bound in the positively charged central hole.


Assuntos
Ribonucleoproteínas Nucleares Pequenas/química , Spliceossomos/química , Sequência de Aminoácidos , Autoantígenos/química , Autoantígenos/metabolismo , Sequência Conservada , Cristalografia por Raios X , Dimerização , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Dobramento de Proteína , Estrutura Terciária de Proteína , Splicing de RNA , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/metabolismo
6.
J Cell Sci ; 107 ( Pt 7): 1807-16, 1994 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-7983149

RESUMO

Experiments investigating the nuclear import of the U2 snRNP-specific B'' protein (U2B'') are presented. U2B'' nuclear transport is shown to be able to occur independently of binding to U2 snRNA. The central segment of the protein (amino acids 90-146) encodes an unusual nuclear localization signal (NLS) that is related to that of the U1 snRNP-specific A protein. However, nuclear import of U2B'' does not depend on this NLS. Sequences in the N-terminal RNP motif of the protein are sufficient to direct nuclear transport, and evidence is presented that the interaction of U2B'' with the U2A' protein mediates this effect. This suggests that U2B'' can 'piggy-back' to the nucleus in association with U2A', and thus be imported to the nucleus by two different mechanisms. U2A' nuclear transport, on the other hand, can occur independently of both U2B'' binding and of U2 snRNA.


Assuntos
Núcleo Celular/metabolismo , Oócitos/metabolismo , Processamento de Proteína Pós-Traducional , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Autoantígenos , Eletroforese em Gel de Poliacrilamida , Feminino , Metionina/metabolismo , Dados de Sequência Molecular , Peso Molecular , Mutagênese , Mutação Puntual , Biossíntese de Proteínas , Ribonucleoproteína Nuclear Pequena U2/biossíntese , Ribonucleoproteína Nuclear Pequena U2/isolamento & purificação , Ribonucleoproteínas Nucleares Pequenas , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Xenopus laevis , Proteínas Centrais de snRNP
8.
J Cell Biol ; 118(1): 11-21, 1992 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-1618898

RESUMO

Nuclear transport of the U1 snRNP-specific protein U1A has been examined. U1A moves to the nucleus by an active process which is independent of interaction with U1 snRNA. Nuclear localization requires an unusually large sequence element situated between amino acids 94 and 204 of the protein. U1A transport is not unidirectional. The protein shuttles between nucleus and cytoplasm. At equilibrium, the concentration of the protein in the nucleus and cytoplasm is not, however, determined solely by transport rates, but can be perturbed by introducing RNA sequences that can specifically bind U1A in either the nuclear or cytoplasmic compartment. Thus, U1A represents a novel class of protein which shuttles between cytoplasm and nucleus and whose intracellular distribution can be altered by the number of free binding sites for the protein present in the cytoplasm or the nucleus.


Assuntos
Núcleo Celular/metabolismo , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA , Ribonucleoproteína Nuclear Pequena U1 , Ribonucleoproteínas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Transporte Biológico Ativo , Análise Mutacional de DNA , Dados de Sequência Molecular , Oócitos , Ribonucleoproteínas/genética , Relação Estrutura-Atividade , Frações Subcelulares/química , Xenopus laevis
9.
J Mol Biol ; 219(4): 577-84, 1991 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-1829114

RESUMO

By the use of hybrids between a U1 small nuclear ribonucleoprotein (snRNP: U1A) and a U2 snRNP (U2B") we have identified regions containing 29 U1A-specific amino acid residues scattered throughout the 117 N-terminal residues of the protein, which are involved in binding to U1 RNA. The U1A-specific amino acid residues have been arbitrarily divided into seven contiguous groups. None of these groups is sufficient for U1 binding when transferred singly into the U2B" context, and none of the groups is essential for U1 binding in U1A. Several different combinations of two or more groups can, however, confer the ability to bind U1 RNA to U2B", suggesting that most or all of the U1A-specific amino acid residues contribute incrementally to the strength of the specific binding interaction. Further evidence for the importance of the U1A-specific amino acid residues, some of which lie outside the region previously shown to be sufficient for U1 RNA binding, is obtained by comparison of the sequence of human and Xenopus laevis U1A cDNAs. These are extremely similar (94.4% identical) between amino acid residues 7 and 114 but much less conserved immediately upstream and downstream from this region.


Assuntos
RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas Nucleares Pequenas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...