Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 3(2): 101341, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496810

RESUMO

We describe a protocol for the efficient culture of human pluripotent stem cells (hPSCs) by supplementing conventional culture medium with L-tryptophan (TRP). TRP is an essential amino acid that is widely available at an affordable cost, thereby allowing cost-effective proliferation of hPSCs compared to using a conventional medium alone. Here, we describe the steps for enhanced proliferation of hPSCs from dermal fibroblasts or peripheral blood cells, but the protocol can be applied to any hPSCs. For complete details on the use and execution of this protocol, please refer to Someya et al. (2021).


Assuntos
Células-Tronco Pluripotentes , Triptofano , Técnicas de Cultura de Células/métodos , Proliferação de Células , Meios de Cultura/farmacologia , Humanos , Triptofano/farmacologia
2.
iScience ; 24(2): 102090, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33615198

RESUMO

Human pluripotent stem cells (hPSCs) have a unique metabolic signature for maintenance of pluripotency, self-renewal, and survival. Although hPSCs could be potentially used in regenerative medicine, the prohibitive cost associated with large-scale cell culture presents a major barrier to the clinical application of hPSC. Moreover, without a fully characterized metabolic signature, hPSC culture conditions are not optimized. Here, we performed detailed amino acid profiling and found that tryptophan (TRP) plays a key role in the proliferation with maintenance of pluripotency. In addition, metabolome analyses revealed that intra- and extracellular kynurenine (KYN) is decreased under TRP-supplemented conditions, whereas N-formylkynurenine (NFK), the upstream metabolite of KYN, is increased thereby contributing to proliferation promotion. Taken together, we demonstrate that TRP is indispensable for survival and proliferation of hPSCs. A deeper understanding of TRP metabolism will enable cost-effective large-scale production of hPSCs, leading to advances in regenerative medicine.

3.
Mass Spectrom (Tokyo) ; 6(1): A0061, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28852604

RESUMO

Because the ionization efficiency for glycopeptides is lower than that of peptides in electrospray ionization, it is frequently necessary to enrich them prior to their analysis using liquid chromatography coupled with tandem mass spectrometry. Although some methods for selectively enriching glycopeptides (e.g., lectin, agarose, and cellulose methods) have been reported, they are time-consuming (procedures that require several hours) and may not be applicable to submicrogram-sized samples. Here, we report on a rapid, simple method for enriching glycopeptides in small sample amounts using cellulose hydrophilic interaction (cellulose HILIC)/reversed-phase (RP) stop-and-go extraction tips (StageTips). Using the cellulose HILIC/RP StageTips, glycopeptide-selective enrichment can be achieved at the nanogram level within a few minutes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...