Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 107(2): 384-392, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25028880

RESUMO

The dynamic packaging of DNA into chromatin is a key determinant of eukaryotic gene regulation and epigenetic inheritance. Nucleosomes are the basic unit of chromatin, and therefore the accessible states of the nucleosome must be the starting point for mechanistic models regarding these essential processes. Although the existence of different unwound nucleosome states has been hypothesized, there have been few studies of these states. The consequences of multiple states are far reaching. These states will behave differently in all aspects, including their interactions with chromatin remodelers, histone variant exchange, and kinetic properties. Here, we demonstrate the existence of two distinct states of the unwound nucleosome, which are accessible at physiological forces and ionic strengths. Using optical tweezers, we measure the rates of unwinding and rewinding for these two states and show that the rewinding rates from each state are different. In addition, we show that the probability of unwinding into each state is dependent on the applied force and ionic strength. Our results demonstrate not only that multiple unwound states exist but that their accessibility can be differentially perturbed, suggesting possible roles for these states in gene regulation. For example, different histone variants or modifications may facilitate or suppress access to DNA by promoting unwinding into one state or the other. We anticipate that the two unwound states reported here will be the basis for future models of eukaryotic transcriptional control.


Assuntos
DNA/química , Histonas/química , Nucleossomos/química , Conformação de Ácido Nucleico , Pinças Ópticas , Conformação Proteica
2.
Nano Lett ; 11(4): 1575-9, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21413779

RESUMO

Controlling electron transport through a single-molecule device is key to the realization of nanoscale electronic components. A design requirement for single molecule electrical devices is that the molecule must be both structurally and electrically connected to the metallic electrodes. Typically, the mechanical and electrical contacts are achieved by the same chemical moiety. In this study, we demonstrate that the structural role may be played by one group (for example, a sulfide) while the electrical role may be played by another (a conjugated chain of C═C π-bonds). We can specify the electrical conductance through the molecule by modulating to which particular site on the oligoene chain the electrode binds. The result is a device that functions as a potentiometer at the single-molecule level.


Assuntos
Transporte de Elétrons , Eletrônica/instrumentação , Sistemas Microeletromecânicos/instrumentação , Nanoestruturas/química , Nanotecnologia/instrumentação , Desenho Assistido por Computador , Impedância Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...