Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(25): 17467-17475, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38864440

RESUMO

Compaction of nucleic acids, namely DNA and RNA, determines their functions and involvement in vital cell processes including transcription, replication, DNA repair and translation. However, experimental probing of the compaction of nucleic acids is not straightforward. In this study, we suggest an approach for this probing using low-frequency Raman spectroscopy. Specifically, we show theoretically, computationally and experimentally the quantifiable correlation between the low-frequency Raman intensity from nucleic acids, magnitude of thermal fluctuations of atomic positions, and the compaction state of biomolecules. Noteworthily, we highlight that the LF Raman intensity differs by an order of magnitude for different samples of DNA, and even for the same sample in the course of long-term storage. The feasibility of the approach is further shown by assessment of the DNA compaction in the nuclei of plant cells. We anticipate that the suggested approach will enlighten compaction of nucleic acids and their dynamics during the key processes of the cell life cycle and under various factors, facilitating advancement of molecular biology and medicine.


Assuntos
DNA , RNA , Análise Espectral Raman , Análise Espectral Raman/métodos , DNA/química , RNA/química , Conformação de Ácido Nucleico , Ácidos Nucleicos/química
2.
Mol Cell ; 84(2): 359-374.e8, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38199006

RESUMO

Friedreich's ataxia (FA) is a debilitating, multisystemic disease caused by the depletion of frataxin (FXN), a mitochondrial iron-sulfur (Fe-S) cluster biogenesis factor. To understand the cellular pathogenesis of FA, we performed quantitative proteomics in FXN-deficient human cells. Nearly every annotated Fe-S cluster-containing protein was depleted, indicating that as a rule, cluster binding confers stability to Fe-S proteins. We also observed depletion of a small mitoribosomal assembly factor METTL17 and evidence of impaired mitochondrial translation. Using comparative sequence analysis, mutagenesis, biochemistry, and cryoelectron microscopy, we show that METTL17 binds to the mitoribosomal small subunit during late assembly and harbors a previously unrecognized [Fe4S4]2+ cluster required for its stability. METTL17 overexpression rescued the mitochondrial translation and bioenergetic defects, but not the cellular growth, of FXN-depleted cells. These findings suggest that METTL17 acts as an Fe-S cluster checkpoint, promoting translation of Fe-S cluster-rich oxidative phosphorylation (OXPHOS) proteins only when Fe-S cofactors are replete.


Assuntos
Ataxia de Friedreich , Proteínas Ferro-Enxofre , Humanos , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Microscopia Crioeletrônica , Frataxina , Biossíntese de Proteínas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Ataxia de Friedreich/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo
3.
Biochemistry (Mosc) ; 88(11): 1832-1843, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38105202

RESUMO

The evolution of mitochondria has proceeded independently in different eukaryotic lines, which is reflected in the diversity of mitochondrial genomes and mechanisms of their expression in eukaryotic species. Mitochondria have lost most of bacterial ancestor genes by transferring them to the nucleus or eliminating them. However, mitochondria of almost all eukaryotic cells still retain relatively small genomes, as well as their replication, transcription, and translation apparatuses. The dependence on the nuclear genome, specific features of mitochondrial transcripts, and synthesis of highly hydrophobic membrane proteins in the mitochondria have led to significant changes in the translation apparatus inherited from the bacterial ancestor, which retained the basic structure necessary for protein synthesis but became more specialized and labile. In this review, we discuss specific properties of translation initiation in the mitochondria and how the evolution of mitochondria affected the functions of main factors initiating protein biosynthesis in these organelles.


Assuntos
Genoma Mitocondrial , Mitocôndrias , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biossíntese de Proteínas , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
4.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203264

RESUMO

Mitochondria carry out various vital roles in eukaryotic cells, including ATP energy synthesis, the regulation of apoptosis, Fe-S cluster formation, and the metabolism of fatty acids, amino acids, and nucleotides. Throughout evolution, mitochondria lost most of their ancestor's genome but kept the replication, transcription, and translation machinery. Protein biosynthesis in mitochondria is specialized in the production of highly hydrophobic proteins encoded by mitochondria. These proteins are components of oxidative phosphorylation chain complexes. The coordination of protein synthesis must be precise to ensure the correct assembly of nuclear-encoded subunits for these complexes. However, the regulatory mechanisms of mitochondrial translation in human cells are not yet fully understood. In this study, we examined the contribution of the SLIRP protein in regulating protein biosynthesis in mitochondria. Using a click-chemistry approach, we discovered that deletion of the SLIRP gene disturbs mitochondrial translation, leading to the dysfunction of complexes I and IV, but it has no significant effect on complexes III and V. We have shown that this protein interacts only with the small subunit of the mitochondrial ribosome, which may indicate its involvement in the regulation of the mitochondrial translation initiation stage.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Proteínas Mitocondriais , Humanos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas Mitocondriais/genética , Células HEK293 , Mitocôndrias/genética , Células Eucarióticas , Proteínas de Ligação a RNA
5.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430722

RESUMO

Protein biosynthesis in mitochondria is tightly coupled with assembly of inner membrane complexes and therefore must be coordinated with cytosolic translation of the mRNAs corresponding to the subunits which are encoded in the nucleus. Molecular mechanisms underlying the regulation of mitochondrial translation remain unclear despite recent advances in structural biology. Until now, only one translational regulator of protein biosynthesis in mammalian mitochondria is known-protein TACO1, which regulates translation of COI mRNA. Here we describe the function of pentatricopeptide-containing protein PTCD2 as a translational regulator of another mitochondrially encoded subunit of cytochrome c oxidase-COIII in the HeLa cell line. Deletion of the PTCD2 gene leads to significant decrease in COIII translation efficiency and impairment in CIV activity. Additionally, we show that PTCD2 protein is partially co-sedimentates with associated mitochondrial ribosome and associates with mitochondrial ribosome proteins in pull-down assays. These data allow concluding that PTCD2 is a specific translational regulator of COIII which attracts the mRNA to the mitochondrial ribosome.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Animais , Humanos , Células HeLa , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mamíferos/metabolismo
6.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012553

RESUMO

Type V Cas12a nucleases are DNA editors working in a wide temperature range and using expanded protospacer-adjacent motifs (PAMs). Though they are widely used, there is still a demand for discovering new ones. Here, we demonstrate a novel ortholog from Ruminococcus bromii sp. entitled RbCas12a, which is able to efficiently cleave target DNA templates, using the particularly high accessibility of PAM 5'-YYN and a relatively wide temperature range from 20 °C to 42 °C. In comparison to Acidaminococcus sp. (AsCas12a) nuclease, RbCas12a is capable of processing DNA more efficiently, and can be active upon being charged by spacer-only RNA at lower concentrations in vitro. We show that the human-optimized RbCas12a nuclease is also active in mammalian cells, and can be applied for efficient deletion incorporation into the human genome. Given the advantageous properties of RbCas12a, this enzyme shows potential for clinical and biotechnological applications within the field of genome editing.


Assuntos
Sistemas CRISPR-Cas , Endonucleases , Acidaminococcus/genética , Acidaminococcus/metabolismo , Animais , DNA/metabolismo , Endonucleases/metabolismo , Edição de Genes , Humanos , Mamíferos/metabolismo , Ruminococcus
7.
Biochemistry (Mosc) ; 86(9): 1151-1161, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34565318

RESUMO

Despite its similarity to protein biosynthesis in bacteria, translation in the mitochondria of modern eukaryotes has several unique features, such as the necessity for coordination of translation of mitochondrial mRNAs encoding proteins of the electron transport chain complexes with translation of other protein components of these complexes in the cytosol. In the mitochondria of baker's yeast Saccharomyces cerevisiae, this coordination is carried out by a system of translational activators that predominantly interact with the 5'-untranslated regions of mitochondrial mRNAs. No such system has been found in human mitochondria, except a single identified translational activator, TACO1. Here, we studied the role of the ZMYND17 gene, an ortholog of the yeast gene for the translational activator Mss51p, on the mitochondrial translation in human cells. Deletion of the ZMYND17 gene did not affect translation in the mitochondria, but led to the decrease in the cytochrome c oxidase activity and increase in the amount of free F1 subunit of ATP synthase. We also investigated the evolutionary history of Mss51p and ZMYND17 and suggested a possible mechanism for the divergence of functions of these orthologous proteins.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Evolução Molecular , Edição de Genes , Células HeLa , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , NADH Desidrogenase/metabolismo , Filogenia , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/classificação , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
8.
J Vis Exp ; (170)2021 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-33900287

RESUMO

Mitochondria are essential organelles of eukaryotic cells capable of aerobic respiration. They contain circular genome and gene expression apparatus. A mitochondrial genome of baker's yeast encodes eight proteins: three subunits of the cytochrome c oxidase (Cox1p, Cox2p, and Cox3p), three subunits of the ATP synthase (Atp6p, Atp8p, and Atp9p), a subunit of the ubiquinol-cytochrome c oxidoreductase enzyme, cytochrome b (Cytb), and mitochondrial ribosomal protein Var1p. The purpose of the method described here is to specifically label these proteins with 35S methionine, separate them by electrophoresis and visualize the signals as discrete bands on the screen. The procedure involves several steps. First, yeast cells are cultured in a galactose-containing medium until they reach the late logarithmic growth stage. Next, cycloheximide treatment blocks cytoplasmic translation and allows 35S methionine incorporation only in mitochondrial translation products. Then, all proteins are extracted from yeast cells and separated by polyacrylamide gel electrophoresis. Finally, the gel is dried and incubated with the storage phosphor screen. The screen is scanned on a phosphorimager revealing the bands. The method can be applied to compare the biosynthesis rate of a single polypeptide in the mitochondria of a mutant yeast strain versus the wild type, which is useful for studying mitochondrial gene expression defects. This protocol gives valuable information about the translation rate of all yeast mitochondrial mRNAs. However, it requires several controls and additional experiments to make proper conclusions.


Assuntos
Genoma Fúngico , Genoma Mitocondrial , RNA Mensageiro/genética , RNA Mitocondrial/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Cicloeximida/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Coloração e Rotulagem/métodos
9.
EMBO J ; 39(18): e105759, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32744742

RESUMO

Parvalbumin-positive (PV+ ) fast-spiking interneurons are essential to control the firing activity of principal neuron ensembles, thereby regulating cognitive processes. The high firing frequency activity of PV+ interneurons imposes high-energy demands on their metabolism that must be supplied by distinctive machinery for energy generation. Exploring single-cell transcriptomic data for the mouse cortex, we identified a metabolism-associated gene with highly restricted expression to PV+ interneurons: Cox6a2, which codes for an isoform of a cytochrome c oxidase subunit. Cox6a2 deletion in mice disrupts perineuronal nets and enhances oxidative stress in PV+ interneurons, which in turn impairs the maturation of their morphological and functional properties. Such dramatic effects were likely due to an essential role of COX6A2 in energy balance of PV+ interneurons, underscored by a decrease in the ATP-to-ADP ratio in Cox6a2-/- PV+ interneurons. Energy disbalance and aberrant maturation likely hinder the integration of PV+ interneurons into cortical neuronal circuits, leading to behavioral alterations in mice. Additionally, in a human patient bearing mutations in COX6A2, we found a potential association of the mutations with mental/neurological abnormalities.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Interneurônios/enzimologia , Proteínas Musculares/metabolismo , Estresse Oxidativo , Difosfato de Adenosina/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Idoso , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Musculares/genética
10.
Nucleic Acids Res ; 48(14): 8022-8034, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32573735

RESUMO

Mammalian mitochondrial ribosomes contain a set of modified nucleotides, which is distinct from that of the cytosolic ribosomes. Nucleotide m4C840 of the murine mitochondrial 12S rRNA is equivalent to the dimethylated m4Cm1402 residue of Escherichia coli 16S rRNA. Here we demonstrate that mouse METTL15 protein is responsible for the formation of m4C residue of the 12S rRNA. Inactivation of Mettl15 gene in murine cell line perturbs the composition of mitochondrial protein biosynthesis machinery. Identification of METTL15 interaction partners revealed that the likely substrate for this RNA methyltransferase is an assembly intermediate of the mitochondrial small ribosomal subunit containing an assembly factor RBFA.


Assuntos
Metiltransferases/metabolismo , Mitocôndrias/enzimologia , RNA Ribossômico/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/enzimologia , Animais , Células Cultivadas , Metilação , Camundongos , Mitocôndrias/metabolismo , RNA Mitocondrial/química , RNA Mitocondrial/metabolismo , RNA Ribossômico/química , RNA Ribossômico 28S/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/metabolismo
11.
Int J Mol Sci ; 21(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408541

RESUMO

Mitochondrial genomes code for several core components of respiratory chain complexes. Thus, mitochondrial translation is of great importance for the organelle as well as for the whole cell. In yeast, mitochondrial translation initiation factor 3, Aim23p, is not essential for the organellar protein synthesis; however, its absence leads to a significant quantitative imbalance of the mitochondrial translation products. This fact points to a possible specific action of Aim23p on the biosynthesis of some mitochondrial protein species. In this work, we examined such peculiar effects of Aim23p in relation to yeast mitochondrial COX2 mRNA translation. We show that Aim23p is indispensable to this process. According to our data, this is mediated by Aimp23p interaction with the known specific factor of the COX2 mRNA translation, Pet111p. If there is no Aim23p in the yeast cells, an increased amount of Pet111p ensures proper COX2 mRNA translation. Our results demonstrate the additional non-canonical function of initiation factor 3 in yeast mitochondrial translation.


Assuntos
Ciclo-Oxigenase 2/genética , Fatores de Iniciação em Eucariotos/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Regiões 5' não Traduzidas/genética , Ciclo-Oxigenase 2/metabolismo , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Modelos Genéticos , Mutação , Fatores de Iniciação de Peptídeos/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Sci Rep ; 10(1): 7110, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32346061

RESUMO

The initiation of protein synthesis in bacteria is ruled by three canonical factors: IF1, IF2, and IF3. This system persists in human mitochondria; however, it functions in a rather different way due to specialization and adaptation to the organellar micro-environment. We focused on human mitochondrial IF3, which was earlier studied in vitro, but no knock-out cellular models have been published up to date. In this work, we generated human HeLa cell lines deficient in the MTIF3 gene and analyzed their mitochondrial function. Despite the lack of IF3mt in these cells, they preserved functional mitochondria capable of oxygen consumption and protein synthesis; however, the translation of ATP6 mRNA was selectively decreased which compromised the assembly of ATP synthase. Together with the analogous results obtained earlier for baker's yeast mitochondrial IF3, our findings point to a functional divergence of mitochondrial initiation factors from their bacterial ancestors.


Assuntos
Fatores de Iniciação em Eucariotos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Biossíntese de Proteínas , Fatores de Iniciação em Eucariotos/genética , Células HeLa , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
13.
RNA Biol ; 17(4): 441-450, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31736397

RESUMO

RNA molecules of all species contain modified nucleotides and particularly m5U residues. The vertebrate mitochondrial small subunit rRNA contains m5U nucleotide in a unique site. In this work we found an enzyme, TRMT2B, responsible for the formation of this nucleotide and m5U residues in a number of mitochondrial tRNA species. Inactivation of the Trmt2B gene leads to a reduction of the activity of respiratory chain complexes I, III and IV, containing the subunits synthesized by the mitochondrial protein synthesis apparatus. Comparative sequence analysis of m5U-specific RNA methyltransferases revealed an unusual evolutionary pathway of TRMT2B formation which includes consecutive substrate specificity switches from the large subunit rRNA to tRNA and then to the small subunit rRNA.


Assuntos
Mitocôndrias/enzimologia , RNA Ribossômico/metabolismo , RNA de Transferência/metabolismo , tRNA Metiltransferases/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Metilação , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Conformação de Ácido Nucleico , RNA Mitocondrial/química , RNA Mitocondrial/metabolismo , RNA Ribossômico/química , RNA de Transferência/química , Especificidade por Substrato , Timina/metabolismo , tRNA Metiltransferases/genética
14.
Cells ; 8(7)2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31248014

RESUMO

After billions of years of evolution, mitochondrion retains its own genome, which gets expressed in mitochondrial matrix. Mitochondrial translation machinery rather differs from modern bacterial and eukaryotic cytosolic systems. Any disturbance in mitochondrial translation drastically impairs mitochondrial function. In budding yeast Saccharomyces cerevisiae, deletion of the gene coding for mitochondrial translation initiation factor 3 - AIM23, leads to an imbalance in mitochondrial protein synthesis and significantly delays growth after shifting from fermentable to non-fermentable carbon sources. Molecular mechanism underlying this adaptation to respiratory growth was unknown. Here, we demonstrate that slow adaptation from glycolysis to respiration in the absence of Aim23p is accompanied by a gradual increase of cytochrome c oxidase activity and by increased levels of Tma19p protein, which protects mitochondria from oxidative stress.


Assuntos
Adaptação Fisiológica , Fatores de Iniciação em Eucariotos/genética , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Ligação ao Cálcio , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica/fisiologia , Genes Mitocondriais/genética , Glicólise/fisiologia , Mitocôndrias/genética , Estresse Oxidativo/fisiologia , Biossíntese de Proteínas/fisiologia
15.
Front Physiol ; 10: 644, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231235

RESUMO

Mitochondria are the organelles of eukaryotic cells responsible for the ATP production by means of the electron transfer chain (ETC). Its work is under strict genetic control providing the correct assembly of the enzyme complexes and the interface to adapt the energetic demands of the cell to the environment. These mechanisms are particularly developed in the cells with high energy consumption, like neurons and myocytes. This review summarizes several aspects of the involvement of the ETC complexes in the transcriptional control mechanisms of the neurons and other cells. Their influence on the differentiation of neurons is also discussed.

16.
Int J Mol Sci ; 19(12)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518034

RESUMO

Protein biosynthesis in mitochondria is organized in a bacterial manner. However, during evolution, mitochondrial translation mechanisms underwent many organelle-specific changes. In particular, almost all mitochondrial translation factors, being orthologous to bacterial proteins, are characterized by some unique elements of primary or secondary structure. In the case of the organellar initiation factor 3 (IF3), these elements are several dozen amino acids long N- and C-terminal extensions. This study focused on the terminal extensions of baker's yeast mitochondrial IF3, Aim23p. By in vivo deletion and complementation analysis, we show that at least one extension is necessary for Aim23p function. At the same time, human mitochondrial IF3 is fully functional in yeast mitochondria even without both terminal extensions. While Escherichia coli IF3 itself is poorly active in yeast mitochondria, adding Aim23p terminal extensions makes the resulting chimeric protein as functional as the cognate factor. Our results show that the terminal extensions of IF3 have evolved as the "adaptors" that accommodate the translation factor of bacterial origin to the evolutionary changed protein biosynthesis system in mitochondria.


Assuntos
Evolução Molecular , Mitocôndrias/metabolismo , Fator de Iniciação 3 em Procariotos/química , Fator de Iniciação 3 em Procariotos/metabolismo , Escherichia coli/metabolismo , Humanos , Domínios Proteicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
PeerJ ; 6: e5620, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245939

RESUMO

The processes of association and dissociation of ribosomal subunits are of great importance for the protein biosynthesis. The mechanistic details of these processes, however, are not well known. In bacteria, upon translation termination, the ribosome dissociates into subunits which is necessary for its further involvement into new initiation step. The dissociated state of the ribosome is maintained by initiation factor 3 (IF3) which binds to free small subunits and prevents their premature association with large subunits. In this work, we have exchanged IF3 in Escherichia coli cells by its ortholog from Saccharomyces cerevisiae mitochondria (Aim23p) and showed that yeast protein cannot functionally substitute the bacterial one and is even slightly toxic for bacterial cells. Our in vitro experiments have demonstrated that Aim23p does not split E. coli ribosomes into subunits. Instead, it fixes a state of ribosomes characterized by sedimentation coefficient about 60S which is not a stable structure but rather reflects a shift of dynamic equilibrium between associated and dissociated states of the ribosome. Mitochondria-specific terminal extensions of Aim23p are necessary for "60S state" formation, and molecular modeling results point out that these extensions might stabilize the position of the protein on the bacterial ribosome.

18.
Sci Rep ; 6: 18749, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728900

RESUMO

The mitochondrial genome almost exclusively encodes a handful of transmembrane constituents of the oxidative phosphorylation (OXPHOS) system. Coordinated expression of these genes ensures the correct stoichiometry of the system's components. Translation initiation in mitochondria is assisted by two general initiation factors mIF2 and mIF3, orthologues of which in bacteria are indispensible for protein synthesis and viability. mIF3 was thought to be absent in Saccharomyces cerevisiae until we recently identified mitochondrial protein Aim23 as the missing orthologue. Here we show that, surprisingly, loss of mIF3/Aim23 in S. cerevisiae does not indiscriminately abrogate mitochondrial translation but rather causes an imbalance in protein production: the rate of synthesis of the Atp9 subunit of F1F0 ATP synthase (complex V) is increased, while expression of Cox1, Cox2 and Cox3 subunits of cytochrome c oxidase (complex IV) is repressed. Our results provide one more example of deviation of mitochondrial translation from its bacterial origins.


Assuntos
Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biossíntese de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Carbono/metabolismo , Respiração Celular , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Ribossomos Mitocondriais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Deleção de Sequência
19.
Int J Mol Sci ; 16(5): 9354-67, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25918939

RESUMO

In yeast Saccharomyces cerevisiae, ~3% of the lysine transfer RNA acceptor 1 (tRK1) pool is imported into mitochondria while the second isoacceptor, tRK2, fully remains in the cytosol. The mitochondrial function of tRK1 is suggested to boost mitochondrial translation under stress conditions. Strikingly, yeast tRK1 can also be imported into human mitochondria in vivo, and can thus be potentially used as a vector to address RNAs with therapeutic anti-replicative capacity into mitochondria of sick cells. Better understanding of the targeting mechanism in yeast and human is thus critical. Mitochondrial import of tRK1 in yeast proceeds first through a drastic conformational rearrangement of tRK1 induced by enolase 2, which carries this freight to the mitochondrial pre-lysyl-tRNA synthetase (preMSK). The latter may cross the mitochondrial membranes to reach the matrix where imported tRK1 could be used by the mitochondrial translation apparatus. This work focuses on the characterization of the complex that tRK1 forms with human enolases and their role on the interaction between tRK1 and human pre-lysyl-tRNA synthetase (preKARS2).


Assuntos
Lisina-tRNA Ligase/metabolismo , Mitocôndrias/metabolismo , Fosfopiruvato Hidratase/metabolismo , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/metabolismo , Algoritmos , Sequência de Aminoácidos , Sequência de Bases , Transporte Biológico , Proteínas de Transporte de Cátions/metabolismo , Citosol/metabolismo , Bases de Dados de Proteínas , Células Hep G2 , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Biossíntese de Proteínas , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
20.
BMC Evol Biol ; 14(1): 35, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24564225

RESUMO

BACKGROUND: The GTPase eEF1A is the eukaryotic factor responsible for the essential, universal function of aminoacyl-tRNA delivery to the ribosome. Surprisingly, eEF1A is not universally present in eukaryotes, being replaced by the paralog EFL independently in multiple lineages. The driving force behind this unusually frequent replacement is poorly understood. RESULTS: Through sequence searching of genomic and EST databases, we find a striking association of eEF1A replacement by EFL and loss of eEF1A's guanine exchange factor, eEF1Bα, suggesting that EFL is able to spontaneously recharge with GTP. Sequence conservation and homology modeling analyses indicate several sequence regions that may be responsible for EFL's lack of requirement for eEF1Bα. CONCLUSIONS: We propose that the unusual pattern of eEF1A, eEF1Bα and EFL presence and absence can be explained by a ratchet-like process: if either eEF1A or eEF1Bα diverges beyond functionality in the presence of EFL, the system is unable to return to the ancestral, eEF1A:eEFBα-driven state.


Assuntos
Eucariotos/genética , Evolução Molecular , Fatores de Alongamento de Peptídeos/genética , Sequência de Aminoácidos , Archaea/genética , Bactérias/genética , Sequência Conservada , Modelos Moleculares , Dados de Sequência Molecular , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/metabolismo , Saccharomyces cerevisiae/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...