Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 88(11): 1832-1843, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38105202

RESUMO

The evolution of mitochondria has proceeded independently in different eukaryotic lines, which is reflected in the diversity of mitochondrial genomes and mechanisms of their expression in eukaryotic species. Mitochondria have lost most of bacterial ancestor genes by transferring them to the nucleus or eliminating them. However, mitochondria of almost all eukaryotic cells still retain relatively small genomes, as well as their replication, transcription, and translation apparatuses. The dependence on the nuclear genome, specific features of mitochondrial transcripts, and synthesis of highly hydrophobic membrane proteins in the mitochondria have led to significant changes in the translation apparatus inherited from the bacterial ancestor, which retained the basic structure necessary for protein synthesis but became more specialized and labile. In this review, we discuss specific properties of translation initiation in the mitochondria and how the evolution of mitochondria affected the functions of main factors initiating protein biosynthesis in these organelles.


Assuntos
Genoma Mitocondrial , Mitocôndrias , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biossíntese de Proteínas , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
2.
Biochemistry (Mosc) ; 86(9): 1151-1161, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34565318

RESUMO

Despite its similarity to protein biosynthesis in bacteria, translation in the mitochondria of modern eukaryotes has several unique features, such as the necessity for coordination of translation of mitochondrial mRNAs encoding proteins of the electron transport chain complexes with translation of other protein components of these complexes in the cytosol. In the mitochondria of baker's yeast Saccharomyces cerevisiae, this coordination is carried out by a system of translational activators that predominantly interact with the 5'-untranslated regions of mitochondrial mRNAs. No such system has been found in human mitochondria, except a single identified translational activator, TACO1. Here, we studied the role of the ZMYND17 gene, an ortholog of the yeast gene for the translational activator Mss51p, on the mitochondrial translation in human cells. Deletion of the ZMYND17 gene did not affect translation in the mitochondria, but led to the decrease in the cytochrome c oxidase activity and increase in the amount of free F1 subunit of ATP synthase. We also investigated the evolutionary history of Mss51p and ZMYND17 and suggested a possible mechanism for the divergence of functions of these orthologous proteins.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Evolução Molecular , Edição de Genes , Células HeLa , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , NADH Desidrogenase/metabolismo , Filogenia , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/classificação , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
3.
J Vis Exp ; (170)2021 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-33900287

RESUMO

Mitochondria are essential organelles of eukaryotic cells capable of aerobic respiration. They contain circular genome and gene expression apparatus. A mitochondrial genome of baker's yeast encodes eight proteins: three subunits of the cytochrome c oxidase (Cox1p, Cox2p, and Cox3p), three subunits of the ATP synthase (Atp6p, Atp8p, and Atp9p), a subunit of the ubiquinol-cytochrome c oxidoreductase enzyme, cytochrome b (Cytb), and mitochondrial ribosomal protein Var1p. The purpose of the method described here is to specifically label these proteins with 35S methionine, separate them by electrophoresis and visualize the signals as discrete bands on the screen. The procedure involves several steps. First, yeast cells are cultured in a galactose-containing medium until they reach the late logarithmic growth stage. Next, cycloheximide treatment blocks cytoplasmic translation and allows 35S methionine incorporation only in mitochondrial translation products. Then, all proteins are extracted from yeast cells and separated by polyacrylamide gel electrophoresis. Finally, the gel is dried and incubated with the storage phosphor screen. The screen is scanned on a phosphorimager revealing the bands. The method can be applied to compare the biosynthesis rate of a single polypeptide in the mitochondria of a mutant yeast strain versus the wild type, which is useful for studying mitochondrial gene expression defects. This protocol gives valuable information about the translation rate of all yeast mitochondrial mRNAs. However, it requires several controls and additional experiments to make proper conclusions.


Assuntos
Genoma Fúngico , Genoma Mitocondrial , RNA Mensageiro/genética , RNA Mitocondrial/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Cicloeximida/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...