Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 637694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135918

RESUMO

Recent advances in unmanned aerial vehicle (UAV) remote sensing and image analysis provide large amounts of plant canopy data, but there is no method to integrate the large imagery datasets with the much smaller manually collected datasets. A simple geographic information system (GIS)-based analysis for a UAV-supported field study (GAUSS) analytical framework was developed to integrate these datasets. It has three steps: developing a model for predicting sample values from UAV imagery, field gridding and trait value prediction, and statistical testing of predicted values. A field cultivation experiment was conducted to examine the effectiveness of the GAUSS framework, using a soybean-wheat crop rotation as the model system Fourteen soybean cultivars and subsequently a single wheat cultivar were grown in the same field. The crop rotation benefits of the soybeans for wheat yield were examined using GAUSS. Combining manually sampled data (n = 143) and pixel-based UAV imagery indices produced a large amount of high-spatial-resolution predicted wheat yields (n = 8,756). Significant differences were detected among soybean cultivars in their effects on wheat yield, and soybean plant traits were associated with the increases. This is the first reported study that links traits of legume plants with rotational benefits to the subsequent crop. Although some limitations and challenges remain, the GAUSS approach can be applied to many types of field-based plant experimentation, and has potential for extensive use in future studies.

2.
Evol Appl ; 12(3): 508-518, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30828371

RESUMO

Accumulating evidence indicates that plants are capable of self/non-self and kin/stranger discrimination. Plants increase biomass of and resource allocation to roots when they encounter roots of conspecific non-self-neighbors, but not when they encounter self roots. Root proliferation usually occurs at the expense of reproductive investment. Therefore, if clonal crops are capable of self/non-self-discrimination, spatially aggregated planting with seedlings of the same genotype may decrease root proliferation and produce a higher yield than planting without considering seedling genotype. To test this idea, we grew Helianthus tuberosus (Jerusalem artichoke) in pot and field conditions and examined self/non-self-discrimination and the effectiveness of genotype-aggregated planting. Plants grown in self pairs allocated less to root biomass than plants grown in non-self pairs in both pot and field conditions; in field conditions, the self pairs produced 40% more tubers by weight than the non-self pairs. When six sprouts from seed tuber of two different genotypes were grown together, with the two genotypes planted aggregately (AGG) or alternately (ALT), plants in the AGG group produced 14% more tubers than plants in the ALT group. These results suggest that spatial aggregation of genotypes increases tuber production in H. tuberosus. Because we found no evidence for trade-offs between root biomass and tuber production, suppression of root proliferation may not be the only mechanism behind the benefits of genotype aggregation. By applying the concept of self/non-self-discrimination, farmers can increase crop production without additional external inputs or expansion of agricultural land use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...