Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 376(1-2): 117-26, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17676312

RESUMO

It has been recently shown that the supersensitivity of distal segments of the rat tail artery to phenylephrine after chemical sympathectomy with reserpine results from the appearance of alpha(1D)-adrenoceptors. It is known that both alpha(1A)- and alpha(1D)-adrenoceptors are involved in the contractions of proximal portions of the rat tail artery. Therefore, this study investigated whether sympathectomy with reserpine would induce supersensitivity in proximal segments of the rat tail artery, a tissue in which alpha(1D)-adrenoceptors are already functional. Proximal segments of tail arteries from reserpinised rats were three- to sixfold more sensitive to phenylephrine and methoxamine than were arteries from control rats (n = 6-2; p < 0.05). The imidazolines N-[5-(4,5-Dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl]methanesulfonamide hydrobromide (A-61603) and oxymetazoline, which activate selectively alpha(1A)-adrenoceptors, were equipotent in tail arteries from control and reserpinised rats (n = 4-2; p < 0.05), whereas buspirone, which activates selectively alpha(1D)-adrenoceptor, was approximately 4-fold more potent in tail arteries from reserpinised rats (n = 4-6; p < 0.05). Prazosin (nonselective) and 5-methylurapidil (alpha(1A)-selective), were competitive antagonists of contractions induced by phenylephrine and were equipotent in tail arteries from control and reserpinised rats (n = 4-6). The selective alpha(1D)-adrenoceptor antagonist 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]decane-7,9-dione dihydrochloride (BMY-7378) presented similar complex antagonism in tail arteries from control and reserpinised rats, with Schild slopes much lower than 1.0 (p < 0.05, n = 4-6). Semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR) revealed that mRNA encoding alpha(1A)-and alpha(1B)-adrenoceptors are similarly distributed in tail arteries from control and reserpinised rats, whereas mRNA for alpha(1D)-adrenoceptors is twice more abundant in the tail artery from reserpinised rats. In conclusion, the supersensitivity induced by reserpine is related only to alpha(1D)-adrenoceptors, even in tissues where this receptor subtype is already present and functional. Only the use of subtype-selective alpha(1)-adrenoceptor agonists detected the increased alpha(1D)-adrenoceptor component after reserpinisation, as the antagonists behaved similarly in tail arteries from control and reserpinised rats.


Assuntos
Artérias/inervação , Músculo Liso Vascular/fisiologia , Receptores Adrenérgicos alfa 1/biossíntese , Cauda/irrigação sanguínea , Agonistas de Receptores Adrenérgicos alfa 1 , Antagonistas de Receptores Adrenérgicos alfa 1 , Animais , Artérias/efeitos dos fármacos , Artérias/metabolismo , Buspirona/farmacologia , Expressão Gênica , Imidazóis/farmacologia , Técnicas In Vitro , Masculino , Metoxamina/farmacologia , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Oximetazolina/farmacologia , Fenilefrina/farmacologia , Piperazinas/farmacologia , Prazosina/farmacologia , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Reserpina/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simpatectomia , Tetra-Hidronaftalenos/farmacologia
2.
J Pharmacol Exp Ther ; 314(2): 753-61, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15872040

RESUMO

The rat tail artery has been used for the study of vasoconstriction mediated by alpha(1A)-adrenoceptors (ARs). However, rings from proximal segments of the tail artery (within the initial 4 cm, PRTA) were at least 3-fold more sensitive to methoxamine and phenylephrine (n = 6-12; p < 0.05) than rings from distal parts (between the sixth and 10th cm, DRTA). Interestingly, the imidazolines N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl]methanesulfonamide hydrobromide (A-61603) and oxymetazoline, which activate selectively alpha(1A)-ARs, were equipotent in PRTA and DRTA (n = 4-12), whereas buspirone, which activates selectively alpha(1D)-AR, was approximately 70-fold more potent in PRTA than in DRTA (n = 8; p < 0.05). The selective alpha(1D)-AR antagonist 8-[2-[4-(methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]decane-7,9-dione dihydrochloride (BMY-7378) was approximately 70-fold more potent against the contractions induced by phenylephrine in PRTA (pK(B) of approximately 8.45; n = 6) than in DRTA (pK(B) of approximately 6.58; n = 6), although the antagonism was complex in PRTA. 5-Methylurapidil, a selective alpha(1A)-antagonist, was equipotent in PRTA and DRTA (pK(B) of approximately 8.4), but the Schild slope in DRTA was 0.73 +/- 0.05 (n = 5). The noncompetitive alpha(1B)-antagonist conotoxin rho-TIA reduced the maximal contraction induced by phenylephrine in DRTA, but not in PRTA. These results indicate a predominant role for alpha(1A)-ARs in the contractions of both PRTA and DRTA but with significant coparticipations of alpha(1D)-ARs in PRTA and alpha(1B)-ARs in DRTA. Semiquantitative reverse transcription-polymerase chain reaction revealed that mRNA encoding alpha(1A)- and alpha(1B)-ARs are similarly distributed in PRTA and DRTA, whereas mRNA for alpha(1D)-ARs is twice more abundant in PRTA. Therefore, alpha(1)-ARs subtypes are differentially distributed along the tail artery. It is important to consider the segment from which the tissue preparation is taken to avoid misinterpretations on receptor mechanisms and drug selectivities.


Assuntos
Músculo Liso Vascular/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Agonistas alfa-Adrenérgicos/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Artérias/efeitos dos fármacos , Buspirona/farmacologia , Conotoxinas/farmacologia , Relação Dose-Resposta a Droga , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Masculino , Contração Muscular/efeitos dos fármacos , Fenilefrina/antagonistas & inibidores , Fenilefrina/farmacologia , Piperazinas/farmacologia , RNA/biossíntese , RNA/isolamento & purificação , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Agonistas do Receptor de Serotonina/farmacologia , Cauda/irrigação sanguínea
3.
Eur J Pharmacol ; 508(1-3): 183-92, 2005 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-15680270

RESUMO

The ability of the conotoxin rho-TIA, a 19-amino acid peptide isolated from the marine snail Conus tulipa, to antagonize contractions induced by noradrenaline through activation of alpha1A-adrenoceptors in rat vas deferens, alpha1B-adrenoceptors in rat spleen and alpha1D-adrenoceptors in rat aorta, and to inhibit the binding of [125I]HEAT (2-[[beta-(4-hydroxyphenyl)ethyl]aminomethyl]-1-tetralone) to membranes of human embryonic kidney (HEK) 293 cells expressing each of the recombinant rat alpha1-adrenoceptors was investigated. rho-TIA (100 nM to 1 microM) antagonized the contractions of vas deferens and aorta in response to noradrenaline without affecting maximal effects and with similar potencies (pA2 approximately 7.2, n=4). This suggests that rho-TIA is a competitive antagonist of alpha1A- and alpha1D-adrenoceptors with no selectivity between these subtypes. Incubation of rho-TIA (30 to 300 nM) with rat spleen caused a significant reduction of the maximal response to noradrenaline, suggesting that rho-TIA is a non-competitive antagonist at alpha1B-adrenoceptors. After receptor inactivation with phenoxybenzamine, the potency of rho-TIA in inhibiting contractions was examined with similar occupancies (approximately 25%) at each subtype. Its potency (pIC50) was 12 times higher in spleen (8.3+/-0.1, n=4) than in vas deferens (7.2+/-0.1, n=4) or aorta (7.2+/-0.1, n=4). In radioligand binding assays, rho-TIA decreased the number of binding sites (B(max)) in membranes from HEK293 cells expressing the rat alpha1B-adrenoceptors without affecting affinity (K(D)). In contrast, in HEK293 cells expressing rat alpha1A- or alpha1D-adrenoceptors, rho-TIA decreased the K(D) without affecting the B(max). It is concluded that rho-TIA will be useful for distinguishing the role of particular alpha1-adrenoceptor subtypes in native tissues.


Assuntos
Conotoxinas/farmacologia , Contração Muscular/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1 , Antagonistas de Receptores Adrenérgicos alfa 1 , Agonistas alfa-Adrenérgicos/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/fisiologia , Ligação Competitiva/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Relação Dose-Resposta a Droga , Humanos , Técnicas In Vitro , Radioisótopos do Iodo , Masculino , Norepinefrina/farmacologia , Piperazinas/farmacologia , Cloreto de Potássio/farmacologia , Prazosina/farmacologia , Ensaio Radioligante , Ratos , Ratos Wistar , Baço/efeitos dos fármacos , Baço/fisiologia , Tetralonas/metabolismo , Ducto Deferente/efeitos dos fármacos , Ducto Deferente/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...