Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 124(3): 1037-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24531544

RESUMO

The nuclear bile acid receptor farnesoid X receptor (FXR) is an important transcriptional regulator of bile acid, lipid, and glucose metabolism. FXR is highly expressed in the liver and intestine and controls the synthesis and enterohepatic circulation of bile acids. However, little is known about FXR-associated proteins that contribute to metabolic regulation. Here, we performed a mass spectrometry-based search for FXR-interacting proteins in human hepatoma cells and identified AMPK as a coregulator of FXR. FXR interacted with the nutrient-sensitive kinase AMPK in the cytoplasm of target cells and was phosphorylated in its hinge domain. In cultured human and murine hepatocytes and enterocytes, pharmacological activation of AMPK inhibited FXR transcriptional activity and prevented FXR coactivator recruitment to promoters of FXR-regulated genes. Furthermore, treatment with AMPK activators, including the antidiabetic biguanide metformin, inhibited FXR agonist induction of FXR target genes in mouse liver and intestine. In a mouse model of intrahepatic cholestasis, metformin treatment induced FXR phosphorylation, perturbed bile acid homeostasis, and worsened liver injury. Together, our data indicate that AMPK directly phosphorylates and regulates FXR transcriptional activity to precipitate liver injury under conditions favoring cholestasis.


Assuntos
Adenilato Quinase/metabolismo , Ácidos e Sais Biliares/biossíntese , Homeostase , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Adenilato Quinase/antagonistas & inibidores , Sequência de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Transporte Biológico , Células CACO-2 , Colestase Intra-Hepática/metabolismo , Colestase Intra-Hepática/patologia , Células Hep G2 , Humanos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Processamento de Proteína Pós-Traducional , Receptores Citoplasmáticos e Nucleares/química , Ribonucleotídeos/farmacologia , Transdução de Sinais , Transativadores/metabolismo , Transcrição Gênica , Ativação Transcricional/efeitos dos fármacos
2.
Pediatr Crit Care Med ; 14(9): e438-41, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24226567

RESUMO

OBJECTIVE: Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts angiotensin II into angiotensin-(1-7). The aim of this study was to determine pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in patients with acute respiratory distress syndrome. DESIGN: Prospective observational pilot study. SETTING: A PICU of a university hospital. PATIENTS: Fourteen patients admitted, requiring mechanical ventilation for respiratory syncytial virus lower respiratory tract infection. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Two groups of patients were distinguished at admission: a group fulfilling the criteria for acute respiratory distress syndrome and a non-acute respiratory distress syndrome group. Angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity were measured in bronchoalveolar lavage fluid. Patients with acute respiratory distress syndrome had increased angiotensin-converting enzyme activity and decreased angiotensin-converting enzyme 2 activity (p < 0.001) compared with the control group. CONCLUSION: It is shown for the first time that in acute respiratory distress syndrome, enhanced angiotensin-converting enzyme activity is paralleled by a reduced angiotensin-converting enzyme 2 activity, similar to that found in an experimental rat model of acute respiratory distress syndrome. The reduced angiotensin-converting enzyme 2 activity may be counteracted by restoring angiotensin-(1-7) level, thereby offering a novel treatment modality for this syndrome.


Assuntos
Peptidil Dipeptidase A/metabolismo , Síndrome do Desconforto Respiratório do Recém-Nascido/enzimologia , Enzima de Conversão de Angiotensina 2 , Líquido da Lavagem Broncoalveolar/química , Estudos de Casos e Controles , Feminino , Humanos , Lactente , Recém-Nascido , Pulmão/enzimologia , Masculino , Peptidil Dipeptidase A/análise , Estudos Prospectivos
3.
J Pathol ; 225(4): 618-27, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22009550

RESUMO

Acute respiratory distress syndrome (ARDS) is a devastating clinical syndrome. Angiotensin-converting enzyme (ACE) and its effector peptide angiotensin (Ang) II have been implicated in the pathogenesis of ARDS. A counter-regulatory enzyme of ACE, ie ACE2 that degrades Ang II to Ang-(1-7), offers a promising novel treatment modality for this syndrome. As the involvement of ACE and ACE2 in ARDS is still unclear, this study investigated the role of these two enzymes in an animal model of ARDS. ARDS was induced in rats by intratracheal administration of LPS followed by mechanical ventilation. During ventilation, animals were treated with saline (placebo), losartan (Ang II receptor antagonist), or with a protease-resistant, cyclic form of Ang-(1-7) [cAng-(1-7)]. In bronchoalveolar lavage fluid (BALF) of ventilated LPS-exposed animals, ACE activity was enhanced, whereas ACE2 activity was reduced. This was matched by enhanced BALF levels of Ang II and reduced levels of Ang-(1-7). Therapeutic intervention with cAng-(1-7) attenuated the inflammatory mediator response, markedly decreased lung injury scores, and improved lung function, as evidenced by increased oxygenation. These data indicate that ARDS develops, in part, due to reduced pulmonary levels of Ang-(1-7) and that repletion of this peptide halts the development of ARDS.


Assuntos
Angiotensina I/farmacologia , Antagonistas de Receptores de Angiotensina/farmacologia , Losartan/farmacologia , Fragmentos de Peptídeos/farmacologia , Peptidil Dipeptidase A/metabolismo , Síndrome do Desconforto Respiratório/enzimologia , Enzima de Conversão de Angiotensina 2 , Animais , Líquido da Lavagem Broncoalveolar/química , Modelos Animais de Doenças , Intubação Intratraqueal , Lipopolissacarídeos/análise , Pulmão/efeitos dos fármacos , Pulmão/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/enzimologia , Macrófagos Alveolares/patologia , Masculino , Peptidil Dipeptidase A/análise , Ratos , Ratos Sprague-Dawley , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/patologia
4.
J Renin Angiotensin Aldosterone Syst ; 12(4): 420-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21788250

RESUMO

INTRODUCTION: Ace b/l polymorphism in rats is associated with differential tissue angiotensin-converting enzyme (ACE) expression and activity, and susceptibility to renal damage. Same polymorphism was recently found in outbred Wistar rat strain with b allele accounting for higher renal ACE, and provided a model for studying renin-angiotensin-aldosterone system (RAAS) response behind the innate high or low ACE conditions. METHODS: We investigated the reaction of these alleles on chronic angiotensin II (AngII) infusion. Wistar rats were selected to breed male homozygotes for the b (WU-B) or l allele (WU-L) (n = 12). For each allele, one group (n = 6) received AngII infusion via an osmotic minipump (435 ng/kg/min) for 3 weeks. The other group (n = 6) served as a control. RESULTS: WU-B had higher ACE activity at baseline then WU-L. Interestingly, baseline renal ACE2 expression and activity were higher in WU-L. AngII infusion induced the same increase in blood pressure in both genotypes, no proteinuria, but caused tubulo-interstitial renal damage with increased α-SMA and monocyte/macrophage influx only in WU-B (p < 0.05). Low ACE WU-L rats did not develop renal damage. CONCLUSION: AngII infusion causes proteinuria-independent renal damage only in rats with genetically predetermined high ACE while rats with low ACE seemed to be protected against the detrimental effect of AngII. Differences in renal ACE2, mirroring those in ACE, might be involved.


Assuntos
Alelos , Predisposição Genética para Doença , Rim/patologia , Peptidil Dipeptidase A/genética , Angiotensina II , Enzima de Conversão de Angiotensina 2 , Animais , Biomarcadores/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Creatinina/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/enzimologia , Rim/fisiopatologia , Testes de Função Renal , Masculino , Tamanho do Órgão/efeitos dos fármacos , Peptidil Dipeptidase A/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
5.
Hypertens Res ; 33(2): 123-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19927150

RESUMO

Differential renal expression of a homolog of the angiotensin-converting enzyme (ACE), that is, ACE2, has been implicated as a genetic basis of polygenetic hypertension in the stroke-prone spontaneously hypertensive rat model. However, data on the role of ACE2 in hypertension are still inconclusive. Therefore, we analyzed kidney ACE2 mRNA, ACE2 protein and ACE2 enzyme activities in the adult polygenetic stroke-prone spontaneously hypertensive rat (SHRSP) and the monogenetic TGR(mREN2)27 rat models, in comparison with their normotensive reference strains, Wistar-Kyoto (WKY) and Spraque-Dawley (SD) rats, respectively. Kidney ACE2 mRNA was studied using quantitative real-time reverse transcriptase-PCR (RT-PCR) in cortex and medulla, whereas protein expression was scored semiquantitatively in detail in different renal structures using immunohistochemistry. Furthermore, total renal tissue ACE2 activity was measured using a fluorimetric assay that was specified by the ACE2 inhibitor DX600. In SHRSP and homozygous TGR(mREN2)27 rats with established hypertension, kidney ACE2 mRNA, protein and tissue ACE2 activities were not different from their respective WKY and SD reference strain, respectively. In addition, when we looked at renal localization, we found ACE2 protein to be predominantly present in glomeruli and endothelium with weak staining in distal and negative staining in proximal tubuli. Thus, our data challenge previous work that implicates ACE2 as a candidate gene for hypertension in SHRSP by reporting a significant reduction of ACE2 in the kidneys of SHRSP. Taken together, renal ACE2 is not altered in the SHRSP and TGR(mREN2)27 genetic rat models with established hypertension.


Assuntos
Hipertensão/enzimologia , Rim/enzimologia , Peptidil Dipeptidase A/fisiologia , Renina/genética , Enzima de Conversão de Angiotensina 2 , Animais , Imuno-Histoquímica , Peptidil Dipeptidase A/análise , Peptidil Dipeptidase A/genética , RNA Mensageiro/análise , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Sprague-Dawley
6.
Mamm Genome ; 20(3): 170-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19255705

RESUMO

In humans, the insertion/deletion polymorphism in the angiotensin converting enzyme (ACE) gene accounts for half of the variance in plasma ACE activity. The deletion allele is associated with high plasma ACE activity, cardiovascular disease, and renal disease. In rat, a similar association is found between the B and L alleles of a microsatellite marker in the ACE gene. We identified the B/L variation in the Wistar outbred rat and bred two lines homozygous for the two alleles (WU-B and WU-L). ACE activity was measured in serum, heart, kidney, and aorta homogenates. Immunohistochemistry and ACE mRNA expression were performed in heart, kidney, and aortic tissue. Aortic rings were collected and stimulated with AngI, AngII, and AngI with Lisinopril to measure ACE functional activity by vasoconstrictor response. Serum, heart, and kidney ACE activity and kidney mRNA expression were two-fold higher in WU-B. Kidney staining showed a clear difference in tubular ACE expression, with more staining in WU-B. While in aorta ACE activity and mRNA expression was twofold higher in WU-L, functional conversion of AngI was higher in WU-B, indicating either a functional difference in AngI to AngII conversion between the two alleles due to different splicing or the presence of other factors involved in the conversion that are differentially expressed as the result of differences in the ACE alleles. The newly developed WU-B and WU-L lines show tissue-specific differences in ACE expression and activity. This provides an experimental tool to study the pathophysiologic consequences of differences in ACE alleles in renal and cardiovascular disease.


Assuntos
Doenças Cardiovasculares/enzimologia , Expressão Gênica , Nefropatias/enzimologia , Peptidil Dipeptidase A/genética , Alelos , Angiotensinas/metabolismo , Animais , Cruzamento , Doenças Cardiovasculares/genética , Humanos , Rim/enzimologia , Nefropatias/genética , Miocárdio/enzimologia , Especificidade de Órgãos , Peptidil Dipeptidase A/sangue , Peptidil Dipeptidase A/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...